Increasing Triplet Subsequence

一. Increasing Triplet Subsequence

Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.

Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.

Examples:

Given [1, 2, 3, 4, 5],
return true.

Given [5, 4, 3, 2, 1],
return false.

Difficulty:Medium

TIME:15MIN

解法

看到这个题的一瞬间,就觉得这道题怎么和求最长递增子序列Longest Increasing Subsequence那么像,细想一下觉得解法应该也差不多,用的就是求最长递增子序列的解法二,代码也差不多就那样写了:

bool increasingTriplet(vector<int>& nums) {
    if(nums.size() < 3)
        return false;
    vector<int> v{nums[0]};
    for(size_t i = 1; i < nums.size(); i++) {
        if(nums[i] > v.back() && v.size() < 3) {
            v.push_back(nums[i]);
            if(v.size() == 3)
                return true;
            continue;
        }
        for(size_t j = 0; j < v.size(); j++) {
            if(nums[i] <= v[j]) {
                v[j] = nums[i];
                break;
            }
        }
    }
    return false;
}

代码的时间复杂度为 O(n)

总结

如果要输出所有长度为3的序列就不能这样做了,当然可以采用暴力搜索的方式求解,具体可以查看Increasing Subsequences

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值