KMP算法笔记

本文介绍了KMP算法,一种用于快速查找目标字符串中是否存在指定模式串的方法,相比于效率较低的BF算法,KMP通过next数组避免了不必要的字符比较。文章详细阐述了next数组的生成过程及KMP算法的实现,帮助读者理解如何在字符串匹配中提高效率。
摘要由CSDN通过智能技术生成

KMP算法是两个字符串直接快速查找匹配字符串位置的算法,与之对比的还有BF算法,但这个算法效率是在是太低了。下面是对BF算法的一些总结。

// 生成 next 数组,该数组是kmp算法的核心,也是控制着模式串不匹配时的下一个匹配位置
function genNextArr(str) {
    let next = new Array(str.length);
    // 前缀K , 后缀 J
    let k = -1,
        j = 0;
    next[0] = -1;
	// 对比 前后缀指针对应的字符是否匹配,如果匹配了则前后缀字符后移,并确定 next后缀对应的前缀位置(next[j] = k)
	// 如果不匹配则前缀K 回滚至 next[K] 对应的位置
    while (j < next.length - 1) {
        if (k == -1 || str[k] == str[j]) {
            k++;
            j++;
            next[j] = k;
        } else {
            k = next[k];
        }
    }

    next[0] = 0;
    return next;
}

// 利用 next 在目标串中查找存在模式串的位置
function kmp(str1, str2) {
    let res = -1;
    let j = 0;
    let next = genNextArr(str2);
    let slen = str1.length;
    let tlen = str2.length;

    for (let i = 0; i < slen; i++) {
        if (str1[i] == str2[j]) {
            if (j == tlen - 1) {
                res = i - j;
                break;
            }
            j++;
        } else {
            j = next[j];
        }
    }
    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值