本题要求实现一个计算Fibonacci数的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有Fibonacci数。所谓Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列。
函数接口定义:
int fib( int n );
void PrintFN( int m, int n );
其中函数fib
须返回第n
项Fibonacci数;函数PrintFN
要在一行中输出给定范围[m
, n
]内的所有Fibonacci数,相邻数字间有一个空格,行末不得有多余空格。如果给定区间内没有Fibonacci数,则输出一行“No Fibonacci number”。
裁判测试程序样例:
#include <stdio.h>
int fib( int n );
void PrintFN( int m, int n );
int main()
{
int m, n, t;
scanf("%d %d %d", &m, &n, &t);
printf("fib(%d) = %d\n", t, fib(t));
PrintFN(m, n);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例1:
20 100 7
输出样例1:
fib(7) = 13
21 34 55 89
输入样例2:
2000 2500 8
输出样例2:
fib(8) = 21
No Fibonacci number
补充代码:
int fib( int n ) { //使用递归方法计算斐波拉西数列的某项
if (n <= 2)
return 1;
else
return fib(n - 1) + fib(n - 2);
}
void PrintFN( int m, int n ) {
int i = 1, flag = 0;
while (fib(i) <= n) {
if (m <= fib(i)) {
printf("%d", fib(i));
if (fib(i + 1) <= n)
printf(" ");
flag = 1;
}
i++;
}
if (flag == 0)
printf("No Fibonacci number");
}