/*
求后缀中(大于0)存在能被k整除的n位数的个数
从低位向高位按位DP
dp[0][i][j] 后缀均不能被k整除、被k除余j、位数为i的数的个数
dp[1][i][j] 存在能整除k的后缀、被k除余j、位数为i的数的个数
*/
#include<bits/stdc++.h>
using namespace std;
typedef __int64 LL;
LL dp[2][1002][102];
LL a;//当前位的位权%k
int main()
{
int i,n,k,m,j,num;
cin>>n>>k>>m;
memset(dp,0,sizeof(dp));
for(i=0;i<10;++i) //位数为1的情况。
{
if(i%k==0&&i) dp[1][1][0]=(dp[1][1][0]+1)%m;
else dp[0][1][i%k]=(dp[0][1][i%k]+1)%m;
}
a=1%k;
for(i=2;i<=n;++i)
{
a=a*10%k;
for(j=0;j<k;++j)
for(num=0;num<=9;++num)
{
if(num==0&&i==n)continue;
int New=(num*a+j)%k; //新数
if(num&&New==0) dp[1][i][New]=(dp[1][i][New]+dp[0][i-1][j])%m;
else dp[0][i][New]=(dp[0][i][New]+dp[0][i-1][j])%m;
dp[1][i][New]=(dp[1][i][New]+dp[1][i-1][j])%m;
}
}
LL ans=0;
for(i=0;i<k;++i) ans=(ans+dp[1][n][i])%m;
cout<<ans<<endl;
return 0;
}
求后缀中(大于0)存在能被k整除的n位数的个数
从低位向高位按位DP
dp[0][i][j] 后缀均不能被k整除、被k除余j、位数为i的数的个数
dp[1][i][j] 存在能整除k的后缀、被k除余j、位数为i的数的个数
*/
#include<bits/stdc++.h>
using namespace std;
typedef __int64 LL;
LL dp[2][1002][102];
LL a;//当前位的位权%k
int main()
{
int i,n,k,m,j,num;
cin>>n>>k>>m;
memset(dp,0,sizeof(dp));
for(i=0;i<10;++i) //位数为1的情况。
{
if(i%k==0&&i) dp[1][1][0]=(dp[1][1][0]+1)%m;
else dp[0][1][i%k]=(dp[0][1][i%k]+1)%m;
}
a=1%k;
for(i=2;i<=n;++i)
{
a=a*10%k;
for(j=0;j<k;++j)
for(num=0;num<=9;++num)
{
if(num==0&&i==n)continue;
int New=(num*a+j)%k; //新数
if(num&&New==0) dp[1][i][New]=(dp[1][i][New]+dp[0][i-1][j])%m;
else dp[0][i][New]=(dp[0][i][New]+dp[0][i-1][j])%m;
dp[1][i][New]=(dp[1][i][New]+dp[1][i-1][j])%m;
}
}
LL ans=0;
for(i=0;i<k;++i) ans=(ans+dp[1][n][i])%m;
cout<<ans<<endl;
return 0;
}