给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。
示例 1:
输入:x = 123
输出:321
示例 2:
输入:x = -123
输出:-321
示例 3:
输入:x = 120
输出:21
示例 4:
输入:x = 0
输出:0
提示:
-231 <= x <= 231 - 1
方法一:
使用求余运算,整除运算,从末尾往前一个一个数字的重新拼接成一个数字,即可以实现反转。
既然不允许存储64位整数,那么该怎么判断数字是否大于int的存储范围呢?
- int存储的最大值:2147483647 如果一个数字在倒数第二个数字的时候判断,大于214748364,那么就一定超过最大值。等于214748364,则判断最后一位是否大于7,是则越界。
- int存储的最小值:-2147483648 同理,在倒数第二个数字的时候判断,小于-214748364 一定会越界,等于-214748364 则判断最后一位是否大于8,是则越界。
代码:
class Solution {
public int reverse(int x) {
// 初始化结果
int res = 0;
while (x != 0) {
// 每次取最后一个数字
int tem = x % 10;
// 进行特判,因为一位一位的累积的,这样判断不会出错。
// 因为判断会在x != 0的时候进行,判断后,就会执行 x /= 10,就会让x = 0,这样就实现了,在倒数第二位进行判断。
if (res > 214748364 || (res == 214748364 && tem > 7)) return 0;
if (res < -214748364 || (res == -214748364 && tem < -8)) return 0;
// 将前面的数字往前移动,相当于到正确的位数
res = res * 10 + tem;
x /= 10;
}
return res;
}
}
时间复杂度:O(n) 数字的长度
空间复杂度:O(1)