作为tensorflow里的正态分布产生函数,这两个函数的输入参数几乎完全一致,
而其主要的区别在于,tf.truncated_normal的输出如字面意思是截断的,而截断的标准是2倍的stddev。
举例,当输入参数mean = 0 , stddev =1时,
使用tf.truncated_normal的输出是不可能出现[-2,2]以外的点的,
而如果shape够大的话,tf.random_normal却会产生2.2或者2.4之类的输出。
下面的代码从tensorflow官网的代码做修改,然后结果看图。
#-*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
k = tf.placeholder(tf.float32)
# Make a normal distribution, with a shifting mean
mean_random_normal = tf.random_normal(shape=[1000],mean=(5*k),stddev=1)
mean_moving_normal = tf.truncated_normal(shape=[1000], mean=(5*k), stddev=1)
# Record that distribution into a histogram summary
tf.summary.histogram("normal/random_output", mean_random_normal)
tf.summary.histogram("normal/truncated_output", mea