目标检测
2014wzy
这个作者很懒,什么都没留下…
展开
-
Selective Search for Object Recoginition
在前一段时间在看论文相关的工作,没有时间整理对这篇论文的理解。在前面的一篇博客【1】中有提到Selective Search【2】,其前期工作利用图像分割的方法得到一些原始区域(具体内容请查看【1】),然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体。 博客【3】已经有对这篇论文的一些简单介绍,写这篇博客不免有重复发明轮子之嫌,不想想太多转载 2016-10-11 20:02:59 · 617 阅读 · 0 评论 -
Regularization(正则化)与Dropout
本文主要讲解神经网络中的正则化(Regularization)和Dropout,都是用了减小过拟合。正则化在机器学习领域中很重要。主要针对模型过拟合问题而提出来的。本文是观看麦子学院的视频整理而来。下面开始介绍。1 正则化机器学学习中的正则化相关的内容可以参见李航的书:统计学习方法。参阅者可以先了解有关的内容。正则化是用来降低overfitting(过拟合)的,减少过拟合的的其他方转载 2017-01-13 16:52:22 · 4084 阅读 · 1 评论 -
批量梯度下降(BGD)、随机梯度下降(SGD)、小批量随机梯度下降(MSGD)实现过程详解
原文地址:http://blog.csdn.NET/xiaoch1222/article/details/52847521时 间:2016.10.18一、前言 接触过神经网络的人都知道,网络的训练是其核心,本人在读书时接触的是BP神经网络,那时写的代码训练样本量不大,没有注意到题目所列出的这些训练方式,偶尔也曾看到了 “批量梯度下降”的名词,转载 2017-01-13 16:54:18 · 8981 阅读 · 3 评论 -
Object Detection Networks on Convolutional Feature Maps
免责声明:本文仅代表个人观点,如有错误,请读者自己鉴别;如果本文不小心含有别人的原创内容,请联系我删除;本人心血制作,若转载请注明出处摘要 1、所有的特征提取器包括两个重要部分:特征提取器和目标分类器。2、特征提取受到巨大关注,产生了深度卷积网等优秀特征提取方法,但是目标分类器木有受到同等关注,如R-CNN只 是用了多层感知器等目标分类器;3、本文重点:设计深度网络转载 2017-03-21 18:58:40 · 625 阅读 · 0 评论 -
目标检测领域
本文转载自:http://blog.csdn.net/zhuiqiuk/article/details/53613879https://handong1587.github.io/deep_learning/2015/10/09/nlp.htmlJump to...LeaderboardPapersR-CNNMultiBoxSPP-NetDeepID转载 2017-03-22 21:31:20 · 2085 阅读 · 0 评论 -
Mask R-CNN个人理解
1 简述Mask R-CNN是一个小巧、灵活的通用对象实例分割框架(object instance segmentation)。它不仅可对图像中的目标进行检测,还可以对每一个目标给出一个高质量的分割结果。它在Faster R-CNN[1]基础之上进行扩展,并行地在bounding box recognition分支上添加一个用于预测目标掩模(object mask)的新分支。该网络还很容易转载 2017-03-24 09:00:23 · 10018 阅读 · 2 评论 -
目标检测论文回顾
看了一段时间的目标检测的论文,在这里写个文章总结一下吧。不一定理解正确,如有问题,欢迎指正。1、RCNNRCNN是基于selective search(SS) 搜索Region proposal(RP),然后对每个RP进行CNN的Inference,这个算法比较直接。 框架应该也挺容易看明白的。 SS对每幅图片提取大约2K个RP,然后对RP进行推理。2、SPP转载 2016-11-06 16:59:38 · 1958 阅读 · 0 评论 -
目标检测总结(自己的一些见解)
目前object detection的工作可以粗略的分为两类:1:使用region proposal的,目前是主流,比如RCNN、SPP-Net、Fast-RCNN、Faster-RCNN以及MSRA最近的工作R-FCN。2:不使用region proposal的,YOLO,SSD。从我这个渣渣的视野来看,这些工作都体现的一个趋势:如何让不同ROI之间尽量多的共享计算量,并充分利用原创 2016-11-11 17:37:04 · 4539 阅读 · 0 评论 -
RCNN--Fast-rcnn--Faster RCNN(思路整理)
本人小硕一枚,方向是深度学习的目标检测,故想把从RCNN到Faster RCNN整个线串一下,理清里面的整个设计流程和创新思路,也算是对大神的创新思维进行学习。我会不定期改善博客里面可能存在的小错误,希望大家多多谅解支持啦。另外,在论文中已经讲到的点,如果不是特别重要的话,我不会再复述的啦,所以说各位看官先研读研读论文先,然后再看看我对这些论文的理解。对了,涉及到哪层是几乘几以及那层到底是多少这种转载 2016-09-29 17:29:34 · 7438 阅读 · 3 评论 -
R-CNN,SPP-NET, Fast-R-CNN,Faster-R-CNN, YOLO, SSD系列深度学习检测方法梳理
1. R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentation技术路线:selective search + CNN + SVMsStep1:候选框提取(selective search)训练:给定一张图片,利用seletive search方法从中提转载 2016-12-19 21:43:00 · 3656 阅读 · 1 评论 -
RCNN, Fast-RCNN, Faster-RCNN的一些事
rbg大神的深度神经网络检测算法系列RCNN、Fast-RCNN、Faster-RCNN可谓是理论与实践的经典范例,论文创新点足够,在github上开源的代码更是造福广大码农,本文以当前最新Faster-RCNN的python实现(https://github.com/rbgirshick/py-faster-rcnn)为准,尝试对rcnn系列算法中的几个关键核心点进行详细的分析:RC原创 2017-01-13 16:24:00 · 3481 阅读 · 1 评论 -
【目标识别】深度学习进行目标识别的资源列表
【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN、YOLO、DenseBox、SSD、Inside-Outside Net、G-CNN等。PapersDeep Neural Networks for Object Detection转载 2017-04-06 08:31:21 · 1984 阅读 · 0 评论 -
Dropout浅层理解与实现
Dropout浅层理解与实现原文地址:http://blog.csdn.net/hjimce/article/details/50413257作者:hjimce一、相关工作 本来今天是要搞《Maxout Networks》和《Network In Network》的,结果发现maxout和dropout有点类似,所以就对dropout做一下相关的总结,了解一下其代码层面的实现转载 2017-01-13 16:51:45 · 846 阅读 · 0 评论 -
BP+SGD+激活函数+代价函数+基本问题处理思路
0. 学习模型评价标准 1)学习速度 2)推广能力/泛化能力/Generalize1. 反向传播算法计算全过程 目标:计算出权重和偏差的梯度(通过反向传播误差的方式)。 下例中,其激活函数为Sigmoid函数: 2. 随机梯度下降法计算全过程 目标:更新权重和偏差。 下例中,其激活函数为Sigmoid函转载 2017-01-13 16:48:17 · 769 阅读 · 0 评论 -
可视化理解卷积神经网络-ECCV 2014
可视化理解卷积神经网络原文地址:http://blog.csdn.net/hjimce/article/details/50544370作者:hjimce一、相关理论本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作,这篇文献转载 2017-01-13 16:47:14 · 718 阅读 · 0 评论 -
《Edge Boxes: Locating Object Proposals from Edges》读后感~
《Edge Boxes: Locating Object Proposals from Edges》是ECCV2014的一篇关于目标检测的一篇文章,作者是来自于微软研究院的Piotr等人,属于大中牛范畴。本文并没有涉及到“机器学习”,其采用的是纯图像的方法,这点让我大感意外,因为很多提取proposals的文献,例如BING等,都是基于学习理论的方法。此外,本文的许多内容,甚至数学公式,都是基于作转载 2016-10-11 20:17:48 · 5033 阅读 · 1 评论 -
奇异值分解及几何意义
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。英文原文:We recommend a sing转载 2016-10-16 15:46:49 · 276 阅读 · 0 评论 -
常用图像数据集大全(分类,跟踪,分割,检测等)
常用图像数据集大全(分类,跟踪,分割,检测等)1.搜狗实验室数据集:http://www.sogou.com/labs/dl/p.html互联网图片库来自sogou图片搜索所索引的部分数据。其中收集了包括人物、动物、建筑、机械、风景、运动等类别,总数高达2,836,535张图片。对于每张图片,数据集中给出了图片的原图、缩略图、所在网页以及所在网页中的相关文本。200多G转载 2016-11-08 14:54:04 · 4402 阅读 · 0 评论 -
卷积神经网络物体检测之感受野大小计算
学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。1 感受野的概念 在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。转载 2016-12-21 20:56:42 · 7346 阅读 · 0 评论 -
系列解读Dropout
本文主要介绍Dropout及延伸下来的一些方法,以便更深入的理解。想要提高CNN的表达或分类能力,最直接的方法就是采用更深的网络和更多的神经元,即deeper and wider。但是,复杂的网络也意味着更加容易过拟合。于是就有了Dropout,大部分实验表明其具有一定的防止过拟合的能力。1- Dropout最早的Dropout可以看Hinton的这篇文章 《Impro转载 2016-12-22 20:07:41 · 1868 阅读 · 0 评论 -
Bounding box regression详解
Reference link:http://caffecn.cn/?/question/160Question:我只知道,输入检测到的box,回归的是检测到box中心点,以及box长和宽到标记的box的映射。看过rcnn的回归的过程,就是把那个loss函数最小。但这个红框里面的loss函数 谁能解释下-------------------------转载 2016-12-19 21:30:09 · 2464 阅读 · 0 评论 -
非极大抑制(Non-maximum suppression)
一、Nms主要目的 在物体检测非极大抑制应用十分广泛,主要目的是为了消除多余的框,找到最佳的物体检测的位置。如上图中:虽然几个框都检测到了人脸,但是我不需要这么多的框,我需要找到一个最能表达人脸的框。下图汽车检测也是同样的原理。非极大值抑制因为一会儿讲RCNN算法,会从一张图片中找出n多个可能是物体的矩形框,然后为每个矩形框转载 2016-12-19 21:30:54 · 2354 阅读 · 0 评论 -
CNN-目标检测、定位、分割
1. 基本概念 1)CNN:Convolutional Neural Networks 2)FC:Fully Connected 3)IoU:Intersection over Union (IoU的值定义:Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到)转载 2016-11-06 19:58:54 · 17380 阅读 · 0 评论 -
目标检测最新资料汇总
写在前面研究DPM大半年了,实验也做过,工程项目也应用过,发现针对复杂背景的对象检测的效果不是很好,而且由于HOG特征提取和多个部件滤波器的特征提取,造成检测速度很慢,难以用在视频的对象检测上。最近看到了CVPR的一些对象检测的新进展,感觉很有领悟,趋向于基于深度学习的路线,收集了一些资料,在研究中。 目标检测就是“给定一张图像或者视频帧,找出其中原创 2016-10-16 17:06:57 · 2626 阅读 · 0 评论 -
caffe中的卷积的计算细节和1x1卷积作用
在卷积神经网络中,卷积算是一个必不可少的操作,下图是一个简单的各层的关系。可以看出一个很好的扩展的关系,下面是整个卷积的大概的过程图中上半部分是传统的卷积的操作,下图是一个矩阵的相乘的操作。下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同一张图里的不同卷积核选取的逐行摆放,不同N的话,就在同一行转载 2016-12-19 22:12:24 · 2367 阅读 · 0 评论 -
CS231n第八课:目标检测定位学习记录
结合视频第八集和笔记:http://chuansong.me/n/353443351445本节课程从分类(Classification),定位(Localization)和检测(Detection)三个方面入手。从上图可以直观的看到: 1.对于分类而言,就是对于给定的图片把其划分到给定的几种类别中某一种。很显然,图像中只能存在一种给定类别中的对象。 2.而定位就是找到对转载 2016-12-21 21:29:35 · 3305 阅读 · 0 评论