wzy的博客

苦尽甘来

4月份总结

转眼间时间就这样一份一秒的过去了,唯一不足的就是英文还没有整好,(从明天开始你需要闭关修炼了好好干吧小伙子,你没有任何时间了) 这几天还是好好的把英文论文整一下吧,要不然你真的没有什么时间了。不过我真的觉得,时间为什么那么快啊 。。。。。。。 这个四月份的总结: 1.人脸检测 mtcnn ,一定要...

2017-04-26 22:46:53

阅读数:521

评论数:0

关于C++ const 的全面总结

http://blog.csdn.net/Eric_Jo/article/details/4138548

2017-04-25 19:36:20

阅读数:314

评论数:0

Liux常用命令和caffe 常用命令

Linux部分:  配置 cuda 环境变量  export LD_LIBRARY_PATH=/usr/local/cuda/lib64:./build/lib:$LD_LIBRARY_PATH 查看当前环境变量: echo $PATH 设置:  方法一:export PATH=PATH:/XXX...

2017-04-24 21:58:11

阅读数:713

评论数:0

/sbin/ldconfig.real: /usr/local/lib/libcudnn.so.6.5 is not a symbolic link

这一步主要是解决: /sbin/ldconfig.real: /usr/local/lib/libcudnn.so.6.5 is not a symbolic link 如果要使用cuDNN, 那么需要将cudnn.h复制到/usr/local/include: sudo cp ...

2017-04-23 17:38:19

阅读数:3797

评论数:0

cmake笔记

原文:http://blog.csdn.net/dbzhang800/article/details/6314073 最大的Qt4程序群(KDE4)采用cmake作为构建系统Qt4的python绑定(pyside)采用了cmake作为构建系统开源的图像处理库 opencv 采用cmake 作...

2017-04-23 11:53:21

阅读数:359

评论数:0

caffe实现多标签输入(multilabel、multitask)

caffe里自带的convert_imageset.cpp直接生成一个data和label都集成在Datum的lmdb(Datum数据结构见最 后),只能集成一个label。而我们平时遇到的分类问题可能会有多个label比如颜色,种类等。 目前网上有多种解决方法:  1. 修改caffe代码,步...

2017-04-19 20:53:10

阅读数:1082

评论数:1

实战caffe多标签分类——汽车品牌与车辆外观(C++接口)[详细实现+数据集]

前言 很多地方我们都需要用到多标签分类,比如一张图片,上面有只蓝猫,另一张图片上面有一只黄狗,那么我们要识别的时候,就可以采用多标签分类这一思想了。任务一是识别出这个到底是猫还是狗?(类型)任务二是识别出这是蓝还是黄?(颜色)      网上看了几篇教程,有讲的非常好的,也有出bug飞...

2017-04-19 20:51:27

阅读数:2607

评论数:3

那些不能遗忘的知识点回顾——C/C++系列(笔试面试高频题)

有那么一些零碎的小知识点,偶尔很迷惑,偶尔被忽略,偶然却发现它们很重要,这段时间正好在温习这些,就整理在这里,一起学习一起提高!后面还会继续补充。 ——前言 1.面向对象的特性   封装、继承、多态。   封装:把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作...

2017-04-19 15:14:17

阅读数:832

评论数:0

在分类中如何处理训练集中不平衡问题

原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131 在分类中如何处理训练集中不平衡问题   在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别不平衡,为了使...

2017-04-19 14:56:13

阅读数:1981

评论数:0

Jupyter Notebook 的快捷键

Jupyter Notebook 的快捷键 Jupyter Notebook 有两种键盘输入模式。编辑模式,允许你往单元中键入代码或文本;这时的单元框线是绿色的。命令模式,键盘输入运行程序命令;这时的单元框线是灰色。 命令模式 (按键 Esc 开启) Enter : 转入编辑模式...

2017-04-18 21:16:25

阅读数:314

评论数:0

安装tensorflow过程遇到的问题

① tensorflow:AttributeError:'module'object has no attribute ’mul‘ According to the tensorflow 1.0.0 release notes, tf.mul, tf.sub and tf.neg are de...

2017-04-18 21:04:36

阅读数:2475

评论数:0

Ubuntu下安装scikit-learn(sklearn)

1. 安装支持部分: 在terminal里面直接输入以下命令,这个命令会安装sklearn所需要的依赖,主要包括 scipy, numpy一些主流依赖。 [html] view plain copy   sudo apt-get instal...

2017-04-18 20:44:10

阅读数:843

评论数:0

CNN浅析和历年ImageNet冠军模型解析

今天在这里我给大家讲解一些深度学习中卷积神经网络的原理和一些经典的网络结构 卷积神经网络原理浅析   卷积神经网络(Convolutional Neural Network,CNN)最初是为解决图像识别等问题设计的,当然其现在的应用不仅限于图像和视频,也可用于时间序列信号,比如音频信号、文本数据...

2017-04-18 20:30:44

阅读数:1658

评论数:0

jupyter安装与卸载

安装 在Linux14.04上安装Jupyter Notebook(首先要保证网络畅通),操作如下(其实最好去看jupyter官网): 打开Terminal,输入 sudo pip install -U pip 回车 sudo pip install jupyter  ...

2017-04-18 09:16:06

阅读数:7231

评论数:0

AlexNet-ImageNet Classification with Deep Convolutional Neural Networks

引言 最近受AlphaGo的刺激,开始从google新开源的Tensorflow库学习DeepLearning。便匆匆忙忙的把环境搭建好,配合官网教程学习源代码,但是由于之前没在意机器学习这块的知识,感觉拉下了不少功课,在Image Recognition章的CNN小节遇到了不少挫折。所...

2017-04-17 19:25:31

阅读数:605

评论数:0

用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别

我想写一系列深度学习的简单实战教程,用mxnet做实现平台的实例代码简单讲解深度学习常用的一些技术方向和实战样例。这一系列的主要内容偏向于 讲解实际的例子,从样例和代码里中学习解决实际问题。我会默认读者有一定神经网络和深度学习的基础知识,读者在这里不会看到大段推导和理论阐述。基础理论 知识十分重要...

2017-04-16 21:40:12

阅读数:947

评论数:0

ECCV16 Center Loss及其在人脸识别中的应用

摘要在大家吐槽用softmax训练出来的人脸模型性能差,contrastive 和 triplet需要个中谜一样的采样方法之际。ECCV 2016 有篇文章提出了权衡的解决方案。通过添加center loss使得简单的softmax就能够训练出拥有内聚性的特征。該特点在人脸识别上尤为重要,从而使得...

2017-04-16 16:45:30

阅读数:1574

评论数:0

基于Caffe的人脸识别实现

导言 深度学习深似海、尤其是在图像人脸识别领域,最近几年的顶会和顶刊常常会出现没有太多的理论创新的文章,但是效果摆在那边。 DeepID是深度学习方法进行人脸识别中的一个简单,却高效的一个网络模型,其结构的特点可以概括为两句话:1、训练一个多个人脸的分类器,当训练好之后,就可以把待测试...

2017-04-13 21:00:56

阅读数:1957

评论数:0

人脸识别 - A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition  ECCV 2016 code: https://github.com/ydwen/caffe-face 本文针对人脸识别问题,针对 loss functi...

2017-04-13 20:44:14

阅读数:681

评论数:0

LFW的正确率,使用方法

关于LFW如何使用,网上资料非常少。这里给出一个比较好的。 这几天鼓捣LFW数据集。模型早跑完了,但是就是不知如何做一个验证。网上关于这个验证的说明非常少。  这里mark一下。  https://github.com/jakezhaojb/LFW_API 现在实验正在进行中。...

2017-04-13 20:37:18

阅读数:4255

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭