形态学滤波在心电图ECG中的应用

本文介绍了形态学滤波在心电图ECG中的应用,通过开运算和闭运算去除信号的波峰和波谷,实现基线漂移的滤除。算法首先使用不同宽度的结构元素去除QRS波和T波,然后通过信号相减获取纯净的ECG信号。实验证明,形态学滤波在滤除基线漂移方面效果显著,但严重漂移可能导致T波失真。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.算法介绍

什么是形态学滤波?

形态学滤波的定义为一种分析空间结构的理论,目标是分析目标的形状和结构。具体理论就不展开讲,直接来看是怎么实现的,也就是数学模型定义是怎样的,定义如下:

图1 形态学滤波

从上图可以看出,形态学滤波里面两个核心的计算就是开运算和闭运算,那么开运算和闭运算又是怎么定义的呢?

开运算定义为先腐蚀后膨胀,闭运算定义为先膨胀后腐蚀,最终腐蚀和膨胀定义如下:

信号f定义为在F={0,1,2,3,4.....N-1}上的离散函数

结果元素K定义为在K={0,1,2,3,4...M-1}上的离散函数

腐蚀运算定义如下:其中 m的范围为0,1,2....,N-M.

(f\Theta k)(m) = \min_{n=0....M-1} f(m+n) - k(n)

膨胀定义如下:其中m的范围为M-1....N-1

(f\oplus k)(m) = \max_{n=m-M+1....m} f(n) + k(m-n)

从定义的数学模型中,我们可以比较简单的实现形态学滤波算法。

2.在心电图ECG滤波中的应用

前面说了,形态学滤波能分析目标的形状和结构,这里我们假定我们的结构元素设定为直线型,从上面可以看出腐蚀运算,当前时刻的输出是未来M个元素找波谷(最小值),且到信号接近末端时,由于信号不够,无法运算,即尾部的M个元素是无效的。

同理可以看出膨胀运算,当前时刻的输出是过去M个元素找波峰(最大值),且在信号的前M个元素,由于信号不够,无法运算,即头部的M个元素是无效的。

而开运算是先腐蚀后膨胀,可以去除ECG信号的波峰,闭运算是先膨胀后腐蚀,可以去除ECG信号的波谷,而去除的波峰、波谷的宽度最大值又和结构元素的长度M相关,利用这个特性,我们可以设计一个宽度为M的直线型结构的形态学滤波,利用开运算和闭运算去除ECG信号的有效波(P波,QRS波,T波),剩下的无用信号即为基线漂移部分,这就是利用形态学滤波去除心电图ECG基线漂移。

接下来设计形态学滤波滤除基线漂移的算法:(假定ECG采样率为250Hz)

1.先去除ECG信号的比较窄的波,如重要的QRS波,结构元素为直线型,为了计算量小,结构元素的幅度可以直接设置为0,结构元素宽度为28,输入信号为原始信号x,进行形态学滤波,得到y1。

2.再去除ECG信号的比较框的波,如T波,同样的结构元素为直线型,为了计算量小,结构元素的幅度可以直接设置为0,结构元素宽度为70,输入信号为原始信号y1,进行形态学滤波,得到y2。

3.得到的的y2即为无用信号,也就是基线漂移部分,用原始信号x减去y2,即为最终想要的信号。

ps: 这里结构元素的长度可能需要根据实际情况和经验适当做调整。

3.试验

通过前面章节,实现算法后,拿实际产品进行尝试,发现形态学滤波,在滤除基线漂移上很擅长,实际效果如下:

图2 形态学滤波

但是形态学滤ECG基线漂移也有不足之处,如果漂移很严重,形态学滤波可以把漂移滤掉,但也同时会导致T波出现比较严重的失真。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值