逻辑思维题之轮流问题

这篇博客讨论了如何在轮流拿球游戏中确保胜利。当100个乒乓球由两人轮流拿,每次至少拿1个,最多拿5个,先拿到第100个球的人获胜。解答指出,首先拿4个球,然后根据对方拿球的数量,确保每次拿球后剩余数量为6的倍数,这样就能保证最后成功拿到第100个球。这个问题与初高中数学题类似,涉及整除和限制条件的策略思考。
摘要由CSDN通过智能技术生成
 

 

#废话#轮流问题还是比较常见的,特别是在各大互联网公司的招聘笔试上,其实这些与数学题差不多,就是考你个脑筋急转弯数学版。

 


 

轮流问题:

  假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。

  条件是:每次拿球者至少要拿1个,但最多不能超过5个。

  问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?

  解答:

    一开始就拿4个球,剩下的要保证是每次两个人拿的球6的倍数就可以了。

    6的倍数有:

    对方拿1个,我拿5个;

    对方拿2个,我拿4个;

    对方拿3个,我拿3个;

    对方拿4个,我拿2个;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值