数据结构之队列的特别实现

队列的特别实现

上两节讲的队列实现方式确实提高了顺序队列和链式队列的效率,可是实现过程还是比较复杂。这样就有可能导致错误,其实有即能复用之前的代码,又比较高效的队列实现算法的。

那就是用栈来实现,可能有人要说了,栈不是后入先出的吗?怎么可能实现栈呢?大家考虑一下,如果使用两个栈呢?如下图:


大家是不是明白一点了呢?

下面做个小结:

1.组合使用两个栈的“后进先出”可以实现队列的“先进先出”;
2.两个栈实现队列的方法复用栈数据结构,实现过程简单且高效;
3.两个栈实现的队列其操作的时间复杂度能够达到O(1)。

栈实现队列方案
实现思路:
1.
准备两个栈用于实现队列:inStack和outStack;

2.当有新元素入队时:将其压入inStack中;

3.当需要出队时:

3.1.当outStack为空时:

3.1.1.将inStack中的元素逐一弹出并压入outStack中;

3.1.2.将outStack的栈顶元素弹出;

3.2.当outStack不为空时:

3.2.1.直接将outStack的栈顶元素弹出。


下面看一下具体的实现代码,栈部分参考:栈的定义与实现

创建队列

// 定义队列结构体
typedef struct _tag_SQueue
{
    LinkStack* inStack;
    LinkStack* outStack;
} TSQueue;
// 创建队列
SQueue* SQueue_Create() // O(1)
{
	  // 定义队列结构体变量,并申请内存
    TSQueue* ret = (TSQueue*)malloc(sizeof(TSQueue));
    // 内存申请成功
    if( ret != NULL )
    {
    		// 创建入栈或出栈
        ret->inStack = LinkStack_Create();
        ret->outStack = LinkStack_Create();
        // 创建栈失败,销毁栈,释放内存
        if( (ret->inStack == NULL) || (ret->outStack == NULL) )
        {
            LinkStack_Destroy(ret->inStack);
            LinkStack_Destroy(ret->outStack);
            
            free(ret);
            
            ret = NULL;
        }
    }
    // 返回队列地址
    return ret;
}
销毁队列、清空队列

// 销毁队列
void SQueue_Destroy(SQueue* queue) // O(n)
{	
	  // 清空队列,释放内存
    SQueue_Clear(queue);
    free(queue);
}
// 清空队列
void SQueue_Clear(SQueue* queue) // O(n)
{
	  // 定义队列结构体变量,并强制转换入口参数
    TSQueue* sQueue = (TSQueue*)queue;
    // 参数合法,清空两个入栈和出栈
    if( sQueue != NULL )
    {
        LinkStack_Clear(sQueue->inStack);
        LinkStack_Clear(sQueue->outStack);
    }
}

入队代码

// 入队
int SQueue_Append(SQueue* queue, void* item) // O(1)
{
	  // 定义队列结构体变量,并强制转换入口参数
    TSQueue* sQueue = (TSQueue*)queue;
    
    // 参数合法,将掺入元素压入栈内
    if( sQueue != NULL )
    {
        LinkStack_Push(sQueue->inStack, item);
    }
}

出队
// 出队
void* SQueue_Retrieve(SQueue* queue) // O(1)
{
	  // 定义队列结构体变量,并强制转换入口参数
    TSQueue* sQueue = (TSQueue*)queue;
    void* ret = NULL;
    
    // 参数合法,将掺入元素压入栈内
    if( sQueue != NULL )
    {
    	  // 出栈元素为空
        if( LinkStack_Size(sQueue->outStack) == 0 )
        {
        	  // 将入栈所有元素压入出栈中
            while( LinkStack_Size(sQueue->inStack) > 0 )
            {
                LinkStack_Push(sQueue->outStack, LinkStack_Pop(sQueue->inStack));
            }
        }
        // 返回弹出的出栈栈顶元素
        ret = LinkStack_Pop(sQueue->outStack);
    }
    
    return ret;
}
获取队首元素

// 获取队头元素
void* SQueue_Header(SQueue* queue) // O(1)
{
	  // 定义队列结构体变量,并强制转换入口参数
    TSQueue* sQueue = (TSQueue*)queue;
    void* ret = NULL;
    
    // 参数合法
    if( sQueue != NULL )
    {
    	  // 出栈元素为空
        if( LinkStack_Size(sQueue->outStack) == 0 )
        {
        	  // 将入栈所有元素压入出栈中
            while( LinkStack_Size(sQueue->inStack) > 0 )
            {
                LinkStack_Push(sQueue->outStack, LinkStack_Pop(sQueue->inStack));
            }
        }
        // 返回出栈栈顶元素
        ret = LinkStack_Top(sQueue->outStack);
    }
    
    return ret;
}

获取队长度

// 获取队长度
int SQueue_Length(SQueue* queue) // O(1)
{
	  // 定义队列结构体变量,并强制转换入口参数
    TSQueue* sQueue = (TSQueue*)queue;
    int ret = -1;
    // 参数合法,返回入栈和出栈的长度和
    if( sQueue != NULL )
    {
        ret = LinkStack_Size(sQueue->inStack) + LinkStack_Size(sQueue->outStack);
    }
    
    return ret;
}

头文件

#ifndef _SQUEUE_H_
#define _SQUEUE_H_

typedef void SQueue;
// 创建队列
SQueue* SQueue_Create();
// 销毁队列
void SQueue_Destroy(SQueue* queue);
// 清空队列
void SQueue_Clear(SQueue* queue);
// 入队
int SQueue_Append(SQueue* queue, void* item);
// 出队
void* SQueue_Retrieve(SQueue* queue);
// 获取队头元素
void* SQueue_Header(SQueue* queue);
// 获取队长度
int SQueue_Length(SQueue* queue);

#endif


测试代码

#include <stdio.h>
#include <stdlib.h>
#include "SQueue.h"

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

int main(int argc, char *argv[]) 
{
    SQueue* queue = SQueue_Create();
    int a[10] = {0};
    int i = 0;
    
    for(i=0; i<10; i++)
    {
        a[i] = i + 1;
        
        SQueue_Append(queue, a + i);
    }
    
    printf("Header: %d\n", *(int*)SQueue_Header(queue));
    printf("Length: %d\n", SQueue_Length(queue));
    
    for(i=0; i<5; i++)
    {
        printf("Retrieve: %d\n", *(int*)SQueue_Retrieve(queue));
    }
    
    printf("Header: %d\n", *(int*)SQueue_Header(queue));
    printf("Length: %d\n", SQueue_Length(queue));
    
    for(i=0; i<10; i++)
    {
        a[i] = i + 1;
        
        SQueue_Append(queue, a + i);
    }
    
    while( SQueue_Length(queue) > 0 )
    {
        printf("Retrieve: %d\n", *(int*)SQueue_Retrieve(queue));
    }
    
    SQueue_Destroy(queue);
    
	return 0;
}


至此,队列也就介绍完了。最后上传一下整体代码链接: 双栈实现队列C实现代码



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值