概要
- 理解快速排序的思想
- 理解分治以及排序过程的设计巧妙之处
- 深入理解时间复杂度分析,最好与最坏情况下的时间复杂度分析,生成树分析法,代入法,主方法。
伪代码
//返回的是分割点,即主元
//循环维护的部分为四个部分
// p...i...j.....r
// p..i 维护 <= r 的元素
// i+1 ... j 维护 > r 的元素
// j+1 ... r-1 的元素暂时没有处理,一次过程只需要O(n)
// r主元作为评价标准
partition(A, p, r)
{
x = A[r]; //主元,作为依据
i = p - 1;
for j = p to r-1
{
if (A[j] <= x) //升序
{
i++;
exchange A[i] with A[j]
}
}
exchange A[i + 1] with A[r]
return i + 1;
}
//第一次调用的时候要用, qsort_normal(A, 1, A.length);
qsort_normal(A, p, r)
{
if (p < r)
{
q = partition(A, p, r);
qsort_normal(A, p, q - 1);
qsort_normal(A, q + 1, r);
}
}
最好情况下,期望时间复杂度是 O(n * log n)
最坏情况下,期望时间复杂度是 O(n * n)
一般情况下,划分会导致一部分差一部分好,只要好坏的比例是常数比例,其期望时间复杂度就是 O(n * log n),可以用生成树来证明:
假设比例是 alpha : 1 - alpha , (alpha <= 1/2)
那么 alpha < 1 - alpha
因此生成树里最先到达叶子的部分(即最短)满足:
c * exp(alpha, k) = 1
最后到达叶子的部分(即最长)满足:
c * exp(1-alpha, k) = 1
求解,都是log n,加上n次,因此复杂度仍然是 O(n * log n)
实现代码
qsort.h文件
#ifndef QSORT_NORMAL_H
#define QSORT_NORMAL_H
#include <stdio.h>
#include <stdlib.h>
typedef int DATATYPE;
int partition(DATATYPE *array, DATATYPE p, DATATYPE r)
{
DATATYPE pivot = array[r];
DATATYPE i = p - 1;
for (DATATYPE j = p; j <= r - 1; j++) {
if (array[j] <= pivot) {
i++;
DATATYPE temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
DATATYPE temp_ = array[i + 1];
array[i + 1] = array[r];
array[r] = temp_;
return i + 1;
}
void qsort_normal(DATATYPE *array, DATATYPE i, DATATYPE j)
{
// first call (A, 1, length);
if (i < j) {
DATATYPE q = partition(array, i, j);
qsort_normal(array, i, q - 1);
qsort_normal(array, q + 1, j);
}
}
#endif
qsort.c 文件
#include "./qsort_normal.h"
int main()
{
DATATYPE array[11] = {3, 4, 5, 1, 7, 23, 8, 10, 4, 2};
qsort_normal(array, 0, 10);
for (int i = 1; i <= 10; i++) {
printf("%d ", array[i]);
}
return 0;
}