redis 集群
根据之前的诸多分析,我们知道单机的redis有很多的局限性,所以可以使用多台机器来实现分区存储,构建更大的数据库,满足更高的业务需求。
之前我们实现的主从复制,可以实现一主多从的架构,但是抽象来看,其实也只是一个redis架构,只有一个主库实现读写,并不是多主多从的结构,所以我们需要redis集群来分散单台服务器的访问压力,实现负载均衡,同时减轻单机的存储上限,提高扩展性。
单机架构
在redis3.0时,提供了redis cluster来满足集群搭建的需求,可以进行手动搭建,分配节点和节点握手,然后手动分配槽。
同时官方提供了redis-trib.rb的ruby脚本,推荐使用该脚本来实现快速搭建和管理。值得一提的是,单机redis本身是有0-15个数据库的,而集群中每个redis节点只有db0。
集群架构
数据分区
如果是单机存储的话,直接将数据存放在单机redis就行了。但是如果是集群存储,就需要考虑到数据分区了。
数据分区通常采取顺序分布和hash分布。
分布方式 | 顺序分布 | 哈希分布 |
---|---|---|
数据分散度 | 分布倾斜 | 分布散列 |
顺序访问 | 支持 | 不支持 |
顺序分布保障了数据的有序性,但是离散性低,可能导致某个分区的数据热度高,其他分区数据的热度低,分区访问不均衡。
哈希分布也分为多种分布方式,比如取余哈希分区,一致性哈希分区等。而redis cluster采用的是虚拟槽分区的方式。
虚拟槽分区
redis cluster设置有0~16383的槽,每个槽映射一个数据子集,通过hash函数,将数据存放在不同的槽位中,每个集群的节点保存一部分的槽。
每个key存储时,先经过哈希函数CRC16(key)得到一个整数,然后整数与16384取余,得到槽的数值,然后找到对应的节点,将数据存放入对应的槽中。
集群通信
但是寻找槽的过程并不是一次就命中的,比如上图key将要存放在14396槽中,但是并不是一下就锁定了node3节点,可能先去询问node1,然后才访问node3。
而集群中节点之间的通信,保证了最多两次就能命中对应槽所在的节点。因为在每个节点中,都保存了其他节点的信息,知道哪个槽由哪个节点负责。这样即使第一次访问没有命中槽,但是会通知客户端,该槽在哪个节点,这样访问对应节点就能精准命中。
- 节点A对节点B发送一个meet操作,B返回后表示A和B之间能够进行沟通。
- 节点A对节点C发送meet操作,C返回后,A和C之间也能进行沟通。
- 然后B根据对A的了解,就能找到C,B和C之间也建立了联系。
- 直到所有节点都能建立联系。
这样每个节点都能互相直到对方负责哪些槽。
集群伸缩
集群并不是建立之后,节点数就固定不变的,也会有新的节点加入集群或者集群中的节点下线,这就是集群的扩容和缩容。但是由于集群节点和槽息息相关,所以集群的伸缩也对应了槽和数据的迁移
集群扩容
当有新的节点准备好加入集群时,这个新的节点还是孤立节点,加入有两种方式。一个是通过集群节点执行命令来和孤立节点握手,另一个则是使用脚本来添加节点。
- cluster_node_ip:port:
cluster meet ip port
new_node_ip:port redis-trib.rb add-node
new_node_ip:port cluster_node_ip:port
通常这个新的节点有两种身份,要么作为主节点,要么作为从节点:
- 主节点:分摊槽和数据
- 从节点:作故障转移备份
其中槽的迁移有以下步骤:
集群缩容
下线节点的流程如下:
- 判断该节点是否持有槽
- 未持有槽就跳转到下一步
- 持有槽则先迁移槽到其他节点
- 通知其他节点(cluster forget)忘记该下线节点
- 关闭下线节点的服务
需要注意的是如果先下线主节点,再下线从节点,会进行故障转移,所以要先下线从节点。
故障转移
除了手动下线节点外,也会面对突发故障。
下面提到的主要是主节点的故障,因为从节点的故障并不影响主节点工作,对应的主节点只会记住自己哪个从节点下线了,并将信息发送给其他节点。故障的从节点重连后,继续官复原职,复制主节点的数据。
只有主节点才需要进行故障转移。在之前学习主从复制时,我们需要使用redis sentinel来实现故障转移。而redis cluster则不需要redis sentinel,其自身就具备了故障转移功能。
根据前面我们了解到,节点之间是会进行通信的,节点之间通过ping/pong交互消息,所以借此就能发现故障。
集群节点发现故障同样是有主观下线和客观下线的
主观下线
对于每个节点有一个故障列表,故障链表维护了当前节点接受到的其他所有节点的信息。
当半数以上的持有槽的主节点都标记某个节点主观下线,就会尝试客观下线。
客观下线
故障转移
集群同样具备了自动转移故障的功能,和哨兵有些类似,在进行客观下线之后,就开始准备让故障节点的从节点“上任”了。
首先是进行资格检查,只有具备资格的从节点才能参加选举:
- 故障节点的所有从节点检查和故障主节点之间的断线时间
- 超过cluster-node-timeout * cluster-slave-validati-factor(默认10)则取消选举资格
然后是准备选举顺序,不同偏移量的节点,参与选举的顺位不同。
offset最大的slave节点,选举顺位最高,最优先选举。而offset较低的slave节点,要延迟选举。
当有从节点参加选举后,主节点收到信息就开始投票。偏移量最大的节点,优先参与选举就更大可能获得最多的票数,称为主节点。
当从节点走马上任变成主节点之后,就要开始进行替换主节点:
- 让该slave节点执行slaveof no one变为master节点
- 将故障节点负责的槽分配给该节点
- 向集群中其他节点广播Pong消息,表明已完成故障转移
- 故障节点重启后,会成为new_master的slave节点
集群的读写分离
在集群模式下的从节点是只读连接的,也就是说集群模式中的从节点是拒绝任何读写请求的。当有命令尝试从slave节点获取数据时,slave节点会重定向命令到负责该数据所在槽的节点。
为什么说是只读连接呢?因为slave可以执行命令:readonly
,这样从节点就能读取请求,但是这只是在这次连接中生效。也就是说,当客户端断开连接重启后,再次请求又变成重定向了。
集群模式下的读写分离更加复杂,需要维护不同主节点的从节点和对于槽的关系。
通常是不建议在集群模式下构建读写分离,而是添加节点来解决需求。不过考虑到节点之间信息交流带来的带宽问题,官方建议节点数不超过1000个。
单机?集群?
集群并不是最优选,而是根据不同的业务需求来判断是否搭建集群,当较小的业务利用单机redis和redis sentinel就能满足需求时,不需要强行搭建集群。
集群也有部分限制:
- redis事务操作的key必须在一个节点上
- 批量操作如mset、mget必须在一个槽里
- 只有一个数据库db0
- 有些命令无法跨节点,如scan、flush、keys
- 更难以维护
所以集群搭建还要考虑单机redis是否已经不能满足业务的并发量,在redis sentinel同样能够满足高可用,且并发并未饱和的前提下,搭建集群反而是画蛇添足了。