欧几里得算法

一、欧几定义:

      欧几里得算法也就是我们平时的辗转相除法,主要用于求取ab的最大公约数,理论证明用到数论的知识点,简单的说:

gcd(a,b)表示a和b的最大公约数,那么就有gcd(a,b)=gcd(b,a%b)=gcd(a',b'),这样就可以递归求解了;

      a=k*b+r,r=a%b;

     如果d是a,b一个公约数,则r=a-k*b必有r mod d==0,因此,d也是(b,a%b)的一个公约数;

     如果d是(b,a%b)的一个公约数,a=k*b+r必有a mod d==0,因此,d也是(a,b)的一个公约数;

      由此可得,(a,b)和(b,a%b)的公约数是共有等价的,最大公约数同样如此;


模板代码:

gcd(int a,int b){

       if (a<b) swap(a,b);

       if (b==0) return a;

             else return gcd(b,a%b);

}


二、扩展欧几里得算法

       一个小知识点,但是可能就是解题的关键。描述如下:对于方程a*x+b*y=gcd(a,b),已知a,b,求解x,y(方程一定有解);对于方程 a*x+b*y=c 有解的条件是 c mod  gcd ( a , b )==0;核心思想:

      a'=b,b'=a%b;则有 递归公式 a'*x‘+b'*y’=gcd(a',b')=gcd(a,b);    b*x+(a-a/b*b)*y=gcd(a,b);

     继续化简:a*y+b*(x-a/b*b)=gcd(a,b);故随着(a,b)==>( b,a%b )的一步步进行,(x,y )==>(y,x-a/b*y);

    直至:b=0时,得解 x'=1,y'=0;在回溯至真正解;


模板代码:

int exgcd(int a,int b,int &x,int &y){

       if (b==0) {

              x=1;

              y=0;

              return a;

      }

      int r=gcd(a,a%b,x,y);

      int tmp=x;

      x=t;

      y=tmp-a/b*y;

      return r;

}


三、线性方程通解

       如果c!=gcd(a,b),则将上面的解乘上 c/gcd(a,b) (c是gcd(a,b)的倍数)

      x=x0+t*b/gcd(a,b),y=y0-t*a/gcd(a,b);


四、扩展欧几里德算法的应用:

1、求解不定方程

2、求解模线性方程

3、求逆元


五、1、2应用如上面稍作化简即可求出,下面详细介绍逆元的应用

     定义:满足a*k=1(mod p) 的k值就是a关于p的乘法逆元

     逆元用途: 当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
     我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p等价。

证:
根据b*k≡1 (mod p)有b*k=p*x+1。
k=(p*x+1)/b。
把k代入(a*k) mod p,得:
(a*(p*x+1)/b) mod p
=((a*p*x)/b+a/b) mod p
=[((a*p*x)/b) mod p +(a/b)] mod p
=[(p*(a*x)/b) mod p +(a/b)] mod p
//p*[(a*x)/b] mod p=0
所以原式等于:(a/b) mod p


乘法逆元求法:求解 b*k-p*y=1,有乘法逆元的条件c恒为1,即b,p互质









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值