题目描述
Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。
对于两个字符串A和B,我们需要进行插入、删除和修改操作将A串变为B串,定义ic,dc,rc分别为三种操作的代价,请设计一个高效算法,求出将A串变为B串所需要的最少代价。 给定两个字符串A和B,及它们的长度和三种操作代价,请返回将A串变为B串所需要的最小代价。
求解过程:
首先生成大小为(N+1)*(M+1)的矩阵dp. dp[x][y]表示A前x个字符串编辑成 B前y个字符所花费的代价.
对于第一行来说,dp[0][y]表示将一个空串变为B的前y个字符组成的子串,花费的代价为ic*y;
同理,对于第一列dp[x][0] = x*dc;
对于其他的位置,dp[x][y]可能有以下几种取值:
dp[x-1][y-1]+rc;//A[x-1]!=B[y-1] 将前x-1个字符变为B前y-1个字符,再将最后一个字符替换.
dp[x-1][y-1];//A[x-1]==B[y-1] 将前x-1个字符变为B前y-1个字符,最后一个不用修改.
dp[x-1][y]+dc;//删除一个字符,将前x-1个字符变为B的前y个字符
dp[x][y-1]+ic;//将A前x-1个字符变为B的前y个字符,再插入一个字符
dp[x][y]的值就为以上四者最小的一个.
求解完毕,dp[n][m]即为所求.
Ex:
字符串A:abcdefg
字符串B: abcdef
输出:1
【代码】
- #include<iostream>
- #include<string>
- using namespace std;
- int change(string a, string b)
- {
- int n = (int)a.size();
- int m = (int)b.size();
- int dp[n+1][m+1];
- int dp[0][0]= 0;
- for(int i=0; i<=n; i++) dp[i][0] = i; //0,1开始不影响
- for(int i=0; i<=m; i++) dp[0][1] = i;
- for(int i=1; i<=n; i++)
- {
- for(int j=1; j<=m; j++)
- {
- if(a[i-1]==b[j-1])
- dp[i][j] = dp[i-1][j-1];
- else
- dp[i][j] = min( min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]);
- }
- }
- return dp[n][m];
- }
- int main()
- {
- string a,b;
- while(cin>>a>>b)
- cout<<change(a,b)<<endl;
- return 0;
- }
注:1. 二维数组的初始化:
dp[0][0] = 0 等价于 memset(dp, 0, sizeof(dp)); //头文件string.h
2. 计算两个字符串的相似度,相似度等于距离+1的倒数,所以
cout<<'1'<<'/'<<dp[n][m]+1<<endl;