原码 补码 反码

  • [一] 存储位数
    -计算机的储存都是以二进制经行储存 那么一组数据要有多少位 就是位机
    一般有四位机 八位机 十六位机 三十二位机 六十四位机等 (因为手工计算 我用的是八位机模式)
    过程 十进制转化为二进制运算 得出结果
    可能存在问题 是否可以运算成功 显示是否一致

  • [1 ] 原码

  • 原码 :对于正数 * 把输入的数直接在转化为二进制得到的数就是原码.
    原码:对于
    负数* 把输入的其绝对值转换得到的二进制符号位变为1
    PS: 这里牵扯到位机问题 四位机得到最存储只能到 十进制的-7 其他位机也有储存极限
    在这里插入图片描述

从这样来说计算机已经可以开始运算了(已经符合计算机的储存方法)
但是尝试运算会发现 结果是错误的 十进制 1+(-1)=0
现在用原码经行计算会发现 0b00000001+0b10000001=10000010!=00000000
所以只有原码 计算机远不能完成计算工作
所以计算机引用了反码机制

  1. 反码 :正数不变 负数除符号位外全部取反
    在这里插入图片描述
    在进行计算 1+(-1)=0
    二进制: 0b00000001+0b11111110=11111111
    可以看到 运算问题得到解决了 但是有一个新的问题 这个是时候0是有两个表达数的 应该有同一个0 所以引用了补码
  2. 补码 : 反码加1 正数 不变
    在这里插入图片描述
    在进行运算发现 所有问题解决

所以由此可得 计算机存的都是补码

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值