人工智能在教学反馈与评分中的应用与发展
1. 智能评分工具的出现
在教学过程中,评分和反馈是重要的环节。Gradescope 是一款评分辅助工具,它能帮助教师更快速地完成评分工作。教师只需将学生作业扫描进该应用,它就会利用卷积神经网络(Convolutional Neural Networks)预测哪些学生作业彼此相似。这样,当教师对某一类学生作业进行评分并给出反馈后,对于其他学生类似的作业,就无需再次依据评分标准进行评分和反馈,大大提高了效率。
2. 自动语音识别的变革
学生的学习表现不仅体现在书面作业上,课堂上的发言也是重要的信息来源。然而,在过去,将语音转换为文本的自动语音识别(Automatic Speech Recognition,ASR)技术并不成熟。直到深度学习的出现,这一状况得到了改变。
2.1 循环神经网络(RNNs)的作用
循环神经网络(Recurrent Neural Networks,RNNs)的应用使语音识别的准确率大幅提升。它能将音频片段转换为矩阵,就像将图像转换为数字形式一样。RNNs 擅长基于序列进行预测,在语音识别中,语音可看作一系列声音,只有作为一个整体才有意义,而不是单独的音频片段。例如,一段舞蹈的每个动作单独看可能毫无意义,但按特定顺序和节奏组合起来,就能产生美妙的意义。RNNs 在神经网络的堆叠函数中,会利用一个函数的解来识别前几个输入,从而预测新的输入。
2.2 训练神经网络的方法——反向传播
在深度学习中,我们需要确定神经网络中多个堆叠函数的系数。最常用的方法是反向传播(backpropagation),具体步骤如下:
1.