u6v7w8x
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
45、主要强化学习模拟平台与相关概念解析
本文系统介绍了主流的强化学习模拟平台,包括Open AI Gym、TORCS、DeepMind Lab、StarCraft II学习环境、Project Malmo和Unity ML-Agents,详细解析了各平台的功能特点与应用场景。同时,文章涵盖了强化学习的核心概念、关键算法(如Q-learning、DQN、AC)、探索与利用困境、模型与无模型方法、稳定性问题及解决策略,并深入探讨了约束处理、多代理系统、深度学习技术融合、评估指标与未来发展趋势。通过流程图直观展示了强化学习的操作流程,为研究者和开发者提原创 2025-09-30 05:01:39 · 22 阅读 · 0 评论 -
44、离线强化学习算法及相关框架与平台介绍
本文系统介绍了离线强化学习的主要算法类别,包括策略约束、基于模型、值函数正则化、基于不确定性、样本内学习和目标条件模仿学习方法,分析了各类算法的原理、优缺点及适用场景。同时,综述了主流强化学习框架(如RLlib、OpenAI Baselines、Tianshou和GOPS)的功能特点与选择策略,并对比了OpenAI Gym、DeepMind Lab、StarCraft II学习环境、Microsoft Project Malmo和Unity ML-Agent Toolkit等仿真平台的特性。最后总结了当前技原创 2025-09-29 15:55:33 · 19 阅读 · 0 评论 -
43、强化学习多场景算法解析与挑战应对
本文系统解析了多智能体强化学习中的合作、竞争与混合奖励场景下的主流算法,涵盖分布式Q学习、FMQ、极小极大Q学习及纳什Q学习等,并深入探讨了逆强化学习中的最大边际与最大熵方法。同时,针对离线强化学习面临的分布偏移与数据局限性挑战,总结了策略约束、模型悲观化、值函数正则化等解决思路。最后展望了强化学习在多智能体协同、高效学习与实际应用中的未来发展方向。原创 2025-09-28 16:20:21 · 19 阅读 · 0 评论 -
42、控制与强化学习技术解析
本文深入解析了线性二次高斯控制(LQG)、元强化学习和多智能体强化学习三大技术。LQG结合卡尔曼滤波与LQR实现最优控制,适用于线性系统但面临高维与鲁棒性挑战;元强化学习通过可迁移经验、策略或损失函数提升新任务的快速适应能力;多智能体强化学习处理智能体间的合作与竞争,支持复杂交互场景。文章还对比了各类技术特点,提出了综合应用思路与未来发展趋势,为智能系统设计提供理论基础与实践指导。原创 2025-09-27 12:08:49 · 18 阅读 · 0 评论 -
41、强化学习中的鲁棒控制与部分可观测MDP问题解析
本文深入探讨了强化学习中的两个关键挑战:系统不确定性下的鲁棒控制与状态部分可观测问题。针对鲁棒RL,文章从有界不确定性建模出发,结合H-无穷控制与零和博弈理论,解析线性和非线性系统的极小极大优化方法及求解算法;对于POMDP,介绍了基于历史信息与信念状态的建模范式,强调分离原理在解耦估计与决策中的作用,并分析其优势与挑战。进一步,文章提出将鲁棒RL与POMDP结合的应用框架,以应对同时存在干扰和观测不确定性的复杂场景,最后通过自动驾驶与智能电网案例展示了实际应用潜力,并展望了未来算法优化与跨领域融合的研究方原创 2025-09-26 11:46:35 · 15 阅读 · 0 评论 -
40、深度强化学习算法与杂项主题解析
本文系统介绍了深度强化学习中的主流算法,包括DDPG、TD3、SAC和DSAC,详细解析了各算法的网络结构、关键技巧及其优缺点。同时探讨了鲁棒强化学习、部分可观测马尔可夫决策过程、元强化学习、多智能体强化学习、逆强化学习和离线强化学习等重要杂项主题。文章还提供了算法选择的决策流程、实际应用建议及未来发展趋势,旨在帮助读者深入理解并有效应用深度强化学习技术解决复杂决策问题。原创 2025-09-25 09:14:43 · 13 阅读 · 0 评论 -
39、深度强化学习:算法与技巧解析
本文系统介绍了深度强化学习中的核心技巧与主流算法。重点分析了熵正则化、软价值函数和经验回放等提升样本效率的关键技术,并详细解析了DQN、DDQN、决斗DQN、TRPO、PPO、A3C、DDPG等代表性算法的原理、流程及优缺点。通过算法对比、实际应用案例和未来展望,为读者提供了全面的技术概览和实践指导,适用于离散与连续动作空间下的复杂决策任务。原创 2025-09-24 10:38:16 · 9 阅读 · 0 评论 -
38、深度强化学习的挑战与应对策略
本文深入探讨了深度强化学习面临的主要挑战,包括非独立同分布序列数据、训练过程容易发散、Q值高估以及样本效率低下等问题,并系统介绍了相应的应对策略。针对不同挑战,文章详细分析了如经验回放、并行探索、分离目标网络、双Q函数等关键技术的原理与优势。同时,进一步探讨了提高样本效率的潜在方法,提出了技巧组合使用与动态调整的优化思路,并展望了深度强化学习与其它技术融合及在多领域应用的未来发展方向。原创 2025-09-23 16:49:45 · 16 阅读 · 0 评论 -
37、人工神经网络全面解析:从基础到训练
本文全面解析了人工神经网络的基础结构、训练方法、典型模型及其广泛应用。从神经元的数学模型到激活函数的选择,详细介绍了全连接层、卷积层和循环层的原理与特点,并对比了CNN和RNN在图像与序列任务中的应用。文章深入探讨了损失函数、反向传播算法及优化策略,分析了偏差-方差权衡与正则化技术。同时,概述了神经网络在图像、自然语言处理和语音识别等领域的实际应用,并展望了模型轻量化、多模态融合、强化学习结合以及可解释性研究等未来发展趋势。最后提供了实用的操作建议与流程图,帮助读者系统掌握神经网络的构建与部署过程。原创 2025-09-22 14:21:29 · 17 阅读 · 0 评论 -
36、强化学习中的安全考量与深度强化学习技术解析
本文深入探讨了强化学习中的安全考量与深度强化学习技术。重点介绍了安全关键自适应评论者系统(ACS)的两个核心组件:安全采样器和混合学习器,并解析了混合ACS算法在SOTI模式下的实现步骤及其应对模型不确定性的鲁棒策略。文章还阐述了安全护盾机制作为最后一道防线的作用,强调其在保证安全性的同时需兼顾最小干扰。在深度强化学习部分,回顾了DRL的发展历程,涵盖DQN、DDPG、TD3、SAC、DSAC等关键算法,并分析了TRPO、PPO、A3C等提升训练稳定性的方法。最后简要介绍了人工神经网络的基础结构与通用近似能原创 2025-09-21 09:22:02 · 12 阅读 · 0 评论 -
35、基于ACS架构的安全策略训练与环境交互
本文深入探讨了Actor-Critic-Scenery(ACS)架构在安全关键控制任务中的应用,重点分析了可行区域的单调扩展机制与基于模型的可解ACS算法设计。文章介绍了双上升迭代算法如何通过极小极大优化同步更新策略与可行区域,并证明其单调扩展性。针对不同环境条件,提出了离线训练在线实施(OTOI)和同步在线训练实施(SOTI)两种安全策略训练模式,分别适用于完美与不完美模型场景。进一步,设计了无模型ACS算法用于虚拟环境训练,以及混合ACS算法以应对现实环境中模型不确定性下的安全交互挑战。结合自动驾驶与多原创 2025-09-20 13:18:46 · 14 阅读 · 0 评论 -
34、基于可达性和可解性的ACS算法:安全策略搜索与区域识别
本文介绍了基于可达性和可解性的Actor-Critic-Scenery(ACS)算法,用于强化学习中的安全策略搜索与最大可行区域(EFR)识别。通过可达可行性函数和风险贝尔曼方程,可达性方法量化未来风险并指导安全策略优化;而可解性方法则利用拉格朗日乘数或惩罚函数检查约束优化问题的可行性,实现对抗性优化下的区域识别。文章详细推导了两种方法的理论基础,给出了算法流程,并对比了各自的优缺点与适用场景,为复杂系统中的安全性强化学习提供了有效框架。原创 2025-09-19 12:10:50 · 12 阅读 · 0 评论 -
33、强化学习中的可行下降方向方法与 ACS 架构
本文深入探讨了强化学习中的可行下降方向(FDD)方法,通过将受限策略改进(PIM)转化为线性规划(LP)或二次规划(QP)问题,系统介绍了受限LP与QP优化的求解策略,包括基于拉格朗日的方法、梯度投影、活动集QP和拟牛顿法。在此基础上,提出了行动者-评论者-场景(ACS)三元素架构,引入‘场景’模块以识别无限可行区域(EFR),并通过可达性场景与可解性场景增强策略的安全性与效率。文章还分析了ACS架构的优势与应用前景,展示了其在自动驾驶、机器人控制等领域的潜力,为安全强化学习提供了新的理论框架与实践路径。原创 2025-09-18 13:05:14 · 14 阅读 · 0 评论 -
32、强化学习中的约束优化方法详解
本文深入探讨了强化学习中的三种主要约束优化方法:惩罚函数方法、拉格朗日乘数法和可行下降方向法。详细介绍了每种方法的原理、优缺点及适用场景,并通过对比分析帮助读者理解其差异。文章还提供了实际应用中的操作建议和未来发展趋势展望,结合流程图直观展示约束策略迭代算法的执行过程,旨在提升强化学习在安全敏感任务中的可靠性与性能。原创 2025-09-17 15:03:08 · 15 阅读 · 0 评论 -
31、状态约束与强化学习中的可行性分析
本文探讨了状态约束在优化与强化学习中的关键作用,重点分析了屏障约束如何扩大可行区域并提升递归可行性,结合紧急制动控制实例验证了不同约束方法的效果。文章系统梳理了约束优化的三类经典方法——惩罚函数法、拉格朗日乘数法和可行下降方向技术,并对比其在直接与间接约束强化学习/自适应动态规划(RL/ADP)算法中的适用性。通过MPC仿真展示了逐点约束与屏障约束对可行域的影响,揭示了屏障系数对安全与性能的权衡。进一步介绍了约束策略迭代、约束贝尔曼方程等核心机制,并讨论了算法的收敛性与实际应用中的设计考量。最后总结了各类约原创 2025-09-16 14:13:33 · 10 阅读 · 0 评论 -
30、状态约束与可行性分析:优化控制中的关键考量
本文深入探讨了优化控制中的状态约束与可行性问题,分析了最简单约束、点约束和障碍约束等不同类型约束的特点及其对系统性能的影响。文章介绍了可行区域、初始可行区域和无限可行区域的概念,强调了在约束最优控制中保证递归可行性的重要性。通过对比各类约束的约束能力和计算复杂度,提出了在实际应用中平衡可行性与最优性的策略选择方法,并讨论了解决不可行性问题的常见思路,如约束松弛、扩大预测范围和合理设计约束类型。最后,文章总结了可行区域在算法设计和系统稳定性中的关键作用,并展望了未来在智能控制与新兴领域中的应用前景。原创 2025-09-15 11:43:42 · 14 阅读 · 0 评论 -
29、强化学习中的状态约束与安全考量
本文深入探讨了强化学习与近似动态规划中的输入与状态约束处理方法,重点分析了饱和策略函数和惩罚效用函数在输入约束中的应用,以及惩罚函数法、拉格朗日乘数法和可行下降方向法在状态约束中的作用。文章还介绍了在自动驾驶与工业控制等实际场景中如何应用这些方法,并提出了离线训练与实时部署两种安全策略训练模式。最后,总结了各类方法的优缺点,并展望了未来在算法效率、模型学习和多约束处理方面的研究方向。原创 2025-09-14 14:15:53 · 19 阅读 · 0 评论 -
28、有限时域自适应动态规划设计方法与车道保持控制实例
本文介绍了有限时域自适应动态规划(ADP)的设计方法,涵盖多级策略与循环策略两种结构,详细推导了策略梯度计算方式,并通过车道保持控制实例验证了算法的有效性。多级策略根据不同阶段调整输入维度和参数,而循环策略利用RNN等共享参数结构提升灵活性和资源利用率。实验表明,ADP在实时域中与长时域MPC性能相近,且在线计算时间仅约0.47ms,具备显著计算优势。文章还对比了两类策略的结构、梯度计算与性能差异,提出了模型参数、算法结构及实际应用中的优化建议,最后展望了算法融合与多目标优化等未来方向。原创 2025-09-13 11:31:35 · 15 阅读 · 0 评论 -
27、追踪控制问题的ADP算法与有限时域设计方法
本文探讨了追踪控制问题中的自适应动态规划(ADP)算法与有限时域设计方法,重点分析了无限时域LQ追踪器在非自协调参考下缺乏真正最优解的理论缺陷,并指出工程实践中常见设计的局限性。为解决该问题,提出基于参考动态采样机制和成本函数拆分的有限时域ADP方法,通过构建增强状态空间和虚拟时间域实现准最优追踪。文章详细介绍了有限时域ADP调节器的算法结构、策略梯度级联计算方式及其高效性优势,并对比了不同类型追踪器的性能特点。最后总结了该方法在降低计算复杂度、提升追踪能力方面的价值,展望其在智能交通、工业自动化等复杂系统原创 2025-09-12 12:36:50 · 11 阅读 · 0 评论 -
26、强化学习与近似动态规划:训练效率、策略结构与应用分析
本文系统分析了无模型强化学习(RL)与基于模型的近似动态规划(ADP)在训练效率、策略结构设计及实际应用中的差异与优势。首先比较了两者的计算复杂度与梯度质量,指出ADP虽单次迭代开销大,但因梯度质量高而整体收敛更快。随后从虚拟时域和实时域分离的视角,深入剖析了两类典型跟踪策略:第一点跟踪器(π-策略)与全时域跟踪器(φ-策略),揭示其结构对闭环性能的影响。结合LQ控制的定量分析,进一步阐明策略自由度与最优性的关系。最后通过自动驾驶与工业控制等案例,提出根据参考轨迹动态性、计算资源和实时性要求选择合适策略结构原创 2025-09-11 16:47:27 · 14 阅读 · 0 评论 -
25、连续时间近似动态规划与强化学习算法详解
本文深入探讨了连续时间近似动态规划(ADP)与强化学习(RL)算法的理论基础、收敛性与稳定性分析,以及在不同环境模型下的应用方法。重点介绍了连续时间系统中价值函数参数化、策略迭代机制、李雅普诺夫稳定性证明和代数Riccati方程求解过程,并对比了无模型RL与基于模型ADP的计算效率差异。通过飞行器控制等实际案例,展示了ADP在最优控制中的高效性与实用性,最后总结了采样技术、算法选择依据及未来发展方向。原创 2025-09-10 12:48:05 · 13 阅读 · 0 评论 -
24、无限时域的离散与连续时间近似动态规划
本文系统介绍了无限时域下的离散时间与连续时间近似动态规划(ADP)方法。内容涵盖离散时间ADP的基础理论、收敛性分析、不精确策略迭代机制以及参数化函数逼近的实现方式,并深入探讨了连续时间ADP中的HJB方程及其求解框架。通过对比两类ADP方法在问题表述、核心方程和应用场景上的差异,结合库存管理和机器人控制的实际案例,展示了ADP在现实问题中的应用价值。文章最后展望了ADP与深度学习融合、多智能体扩展及在线学习的发展方向,为最优控制领域的研究与实践提供了全面参考。原创 2025-09-09 11:14:24 · 10 阅读 · 0 评论 -
23、离散时间无限时域近似动态规划全解析
本文深入解析了离散时间无限时域近似动态规划(ADP)的理论与应用,涵盖其基本定义、贝尔曼方程推导、最优策略求解机制及算法分类。重点介绍了策略迭代ADP和值迭代ADP在演员-评论家框架下的统一结构,并分析了收敛性与闭环稳定性的关系。文章还探讨了实际应用中的挑战,如马尔可夫性质违反的处理方法,以及在非线性、受限系统中的适用性,为复杂最优控制问题提供了系统性解决方案。原创 2025-09-08 10:29:29 · 14 阅读 · 0 评论 -
22、强化学习中的优化技术与目标函数变体
本文系统介绍了强化学习中的核心优化技术与目标函数变体。内容涵盖重参数化梯度、无导数优化(如进化策略)、一阶优化(如Adam)和二阶优化(如牛顿法)的原理与对比,深入探讨了代理函数优化(如TRPO)和熵正则化在提升训练稳定性与探索能力方面的应用,并回顾了近似动态规划(ADP)的发展历程及其在复杂系统控制中的前景。文章结合公式推导、算法流程与实际应用场景,为理解和选择强化学习优化方法提供了全面指导。原创 2025-09-07 13:39:07 · 11 阅读 · 0 评论 -
21、强化学习中的策略梯度与演员 - 评论家架构
本文深入探讨了强化学习中的核心方法——策略梯度与演员-评论家(Actor-Critic)架构,涵盖离策略梯度估计、多种主流AC算法(如A2C、DDPG、PPO、SAC等)的原理与对比,以及关键的随机导数技巧(包括对数导数与重参数化技巧)。文章还分析了不同算法的适用场景与优化策略选择,旨在为研究者和实践者提供全面的理论基础与应用指导,助力在复杂决策任务中实现高效、稳定的强化学习系统。原创 2025-09-06 12:59:45 · 15 阅读 · 0 评论 -
20、策略梯度方法详解:从在线到离线的探索
本文详细探讨了策略梯度方法,涵盖从在线到离线的多种实现形式。文章首先介绍策略梯度的级联推导过程,随后深入分析在线策略梯度及其变体,包括蒙特卡罗策略梯度、基线技术和状态价值函数的应用,并比较其优劣。接着讨论离线策略梯度的真实梯度与准梯度,强调样本效率与方差权衡。通过自动驾驶、游戏AI和资源管理等实际案例,展示了不同策略梯度方法的应用场景。最后总结各类方法的适用条件,并展望未来发展趋势,如多步TD误差、深度学习融合与自适应基线等方向。原创 2025-09-05 11:56:26 · 14 阅读 · 0 评论 -
19、直接策略梯度强化学习:原理与梯度推导
本文深入探讨了直接策略梯度强化学习的基本原理与梯度推导过程。首先分析了直接强化学习面临的训练不稳定性问题,并介绍了TD3、TRPO和PPO等代表性算法的解决思路。随后详细阐述了总体目标函数的两种形式——折扣目标函数与平均目标函数,及其在连续任务中的数学定义与意义。接着从轨迹和级联两个概念出发,系统推导了vanilla策略梯度,展示了似然比梯度的形成机制及时间因果关系的简化作用。最后比较了随机策略梯度与确定性策略梯度在探索能力、方差与计算效率方面的差异,并对未来的优化方向进行了展望。原创 2025-09-04 16:55:40 · 8 阅读 · 0 评论 -
18、强化学习:从间接算法到直接策略梯度的探索
本文深入探讨了强化学习中从间接算法到直接策略梯度的发展路径,重点分析了策略梯度算法的基础理论、分类及其在自动驾驶等实际场景中的应用。文章对比了随机与确定性策略、基于状态值与动作值函数的Actor-Critic算法的优劣,并通过自动驾驶案例展示了不同算法的训练效果与性能差异。同时,总结了策略梯度算法面临的挑战,如高方差、收敛性问题,并提出了经验回放、并行探索、目标网络分离等优化建议。最后展望了策略梯度算法在未来医疗、金融等领域的应用潜力。原创 2025-09-03 13:28:49 · 11 阅读 · 0 评论 -
17、强化学习中的策略近似与Actor - Critic架构解析
本文深入探讨了强化学习中的策略近似方法与Actor-Critic架构,涵盖基于动作价值函数和状态价值函数的策略梯度推导,以及间接离策略梯度的计算方式。文章介绍了策略改进的新设计,包括基于策略熵的探索增强和基于KL散度约束的稳定更新机制,并系统分析了Actor-Critic框架下的三类主流无模型算法:Sto-V、Det-Q与Sto-Q。通过对比确定性与随机策略的优劣,结合超参数选择策略,全面解析了算法性能影响因素,为实际应用提供理论支持与实践指导。原创 2025-09-02 13:47:26 · 14 阅读 · 0 评论 -
16、强化学习中的值函数与策略近似:原理、挑战与解决方案
本文深入探讨了强化学习中的值函数与策略近似的核心原理、面临的关键挑战及其解决方案。内容涵盖值函数近似的梯度估计方法(如MC和TD)、在线与离线策略的差异、致命三角问题的成因与应对策略,并对比了间接与直接强化学习在策略梯度推导上的本质区别。同时,文章总结了不同算法的应用场景与优缺点,提出了实际应用中的选择建议及未来研究方向,为理解和优化强化学习系统提供了全面指导。原创 2025-09-01 14:38:01 · 12 阅读 · 0 评论 -
15、强化学习中的间接方法与函数逼近
本文深入探讨了强化学习中的间接方法与函数逼近技术,重点分析了演员-评论员算法的架构与挑战,比较了二进制、多项式、傅里叶和径向基函数在线性逼近中的优缺点及适用场景。文章详细阐述了高维和连续空间下值函数与策略的参数化方法,包括确定性与随机策略的设计,并讨论了值函数逼近的优化过程,强调加权函数选择与梯度估计对收敛性的影响。最后提供了实际应用建议与未来研究方向,为复杂强化学习系统的构建提供理论支持和技术路径。原创 2025-08-31 16:51:01 · 13 阅读 · 0 评论 -
14、强化学习中的策略改进、实例分析与函数逼近
本文深入探讨了强化学习中的策略改进理论与函数逼近技术,提出基于期望条件的策略改进方法,并通过定理证明其与贪婪策略的等价性。结合网格道路上自动驾驶汽车的实例,分析了动态规划及SARSA、Q-learning等算法在不同参数下的性能表现。文章系统介绍了不动点迭代理论及其在贝尔曼方程求解中的应用,进一步针对大规模状态空间问题,详细阐述了仅价值逼近、仅策略逼近和演员-评论家三种函数逼近类型的工作原理、典型算法及其优缺点。最后总结了函数逼近在解决维度灾难、提升学习效率和适应连续空间方面的优势,并展望了未来在高效算法设原创 2025-08-30 15:41:59 · 10 阅读 · 0 评论 -
13、强化学习中的动态规划及策略优化深度解析
本文深入探讨了强化学习中动态规划的同步与异步实现方式,并在广义策略迭代框架下统一了基于模型和无模型的方法。文章分析了策略评估与价值迭代过程如何对应不同的定点迭代方案,如皮卡德迭代、曼迭代等,并揭示其收敛机制。同时,介绍了精确DP中的反向递归方法及其局限性,提出了两种扩展的更好策略定义——基于策略熵惩罚和基于期望的全局优化,并讨论了它们的收敛性与应用场景。最后,通过操作步骤、流程图和实际案例,系统展示了动态规划与定点迭代在强化学习中的应用路径,为算法设计与优化提供了理论支持和实践指导。原创 2025-08-29 16:06:49 · 13 阅读 · 0 评论 -
12、动态规划在强化学习中的应用与优化
本文深入探讨了动态规划在强化学习中的核心应用与优化方法,涵盖策略迭代与值迭代的理论基础及其收敛性分析,揭示策略迭代本质上是牛顿-拉夫逊迭代的特例。文章详细介绍了值迭代的定点迭代机制及其在折扣与平均成本问题中的扩展,包括相对值迭代和消失折扣因子方法。针对随机线性二次(LQ)控制问题,解析了平均成本与折扣成本下的最优控制律,并通过仿真比较其性能差异。进一步讨论了动态规划的统一框架——广义策略迭代(GPI),以及在大规模问题中面临的维度灾难与近似动态规划(ADP)的应对策略。结合供应链管理和自动控制等实际案例,展原创 2025-08-28 16:45:10 · 11 阅读 · 0 评论 -
11、随机序列决策中的动态规划算法解析
本文深入探讨了随机序列决策中的动态规划算法,重点解析了折扣成本与平均成本的理论差异及其性能比较,详细阐述了策略迭代和值迭代的原理、实现步骤与收敛性分析。文章还通过流程图直观展示了两种算法的执行过程,并对比了其优劣与适用场景。进一步介绍了动态规划在资源分配和路径规划等实际问题中的应用步骤,提出了算法优化建议,并展望了其与深度学习融合、多智能体系统应用等未来发展方向,为理解和应用动态规划提供了全面的理论基础与实践指导。原创 2025-08-27 09:30:21 · 11 阅读 · 0 评论 -
10、强化学习中的时间差分与动态规划方法解析
本文深入解析了强化学习中的两种核心方法——时间差分学习与动态规划。详细探讨了n步TD的误差缩减特性、TD-Lambda策略评估机制及其在清洁机器人任务中的应用,比较了Q-学习、SARSA和MC算法的性能表现。同时,分析了动态规划在随机顺序决策中的建模方式、平均成本与折扣成本的权衡,以及其适用场景与局限性。通过流程图和表格直观展示了算法流程与性能对比,最后总结了方法选择步骤,并展望了未来发展方向,为实际应用提供了理论支持与实践指导。原创 2025-08-26 14:34:57 · 12 阅读 · 0 评论 -
9、无模型间接强化学习:时间差分法深度解析
本文深入解析了无模型间接强化学习中的核心方法——时间差分(TD)学习,涵盖其基本概念、策略改进机制及典型算法如SARSA、Q-学习和期望SARSA。文章对比了在线与离线策略的差异,介绍了重要性采样、递归价值初始化等关键技术,并通过n步TD和TD-lambda统一视角揭示了TD与蒙特卡罗方法之间的关系。结合迷宫导航案例,分析了不同TD算法的应用特点与性能表现,最后总结了各类算法的适用场景与未来发展方向。原创 2025-08-25 09:01:08 · 15 阅读 · 0 评论 -
8、强化学习中的蒙特卡罗与时间差分方法解析
本文深入解析了强化学习中的两种核心方法——蒙特卡罗(MC)与时间差分(TD)方法。首先介绍了MC方法的批量估计、在线与离线策略实现、增量值函数估计及其在网格世界清洁机器人中的应用,随后阐述了TD方法的自举机制、TD(0)算法原理,并对比了MC与TD在策略评估中的异同。文章还通过伪代码和流程图展示了两类方法的学习流程,分析了关键超参数的影响,强调了TD方法在样本效率和实时学习方面的优势,为理解无模型强化学习提供了系统性视角。原创 2025-08-24 09:32:08 · 16 阅读 · 0 评论 -
7、蒙特卡罗强化学习策略与重要性采样技术解析
本文深入解析了蒙特卡罗强化学习中的核心策略与关键技术,涵盖贪心策略、ε-贪心策略及玻尔兹曼探索在开发与探索之间的平衡机制。文章详细阐述了策略改进定理的理论基础及其在策略优化中的指导作用,并探讨了在线策略与离线策略的区别,重点分析了重要性采样技术在处理策略不匹配问题中的应用与挑战。通过游戏、机器人控制和金融投资等领域的应用案例,展示了蒙特卡罗方法的实际价值。最后,展望了其与深度学习融合、多智能体系统应用及理论深化的发展趋势,为强化学习的研究与实践提供了全面视角。原创 2025-08-23 14:34:51 · 13 阅读 · 0 评论 -
6、强化学习关键概念与蒙特卡罗方法解析
本文深入解析了强化学习中的关键概念,包括样本效率与近似精度的定义与衡量方式,并通过室内清洁机器人和自动驾驶系统两个实例阐述了马尔可夫决策过程的应用。文章重点介绍了蒙特卡罗方法在无模型强化学习中的核心作用,涵盖其策略评估与改进机制、首次访问与每次访问策略、探索性开始等关键技术点,同时总结了该方法的优缺点及在实际应用中的考虑因素。最后展望了蒙特卡罗方法与其他算法融合的潜在发展方向。原创 2025-08-22 16:07:56 · 14 阅读 · 0 评论