24、核偏最小二乘回归的优化视角

核偏最小二乘回归的优化视角

1. 核中心化操作

核中心化是核方法中的重要步骤。对于训练核,先从列元素中减去列的平均值,然后从每一行元素中减去修改后训练核行的平均行值。训练的平均列值可以存储在内存中,用于以类似的方式对测试核进行中心化。对于测试核的中心化,先从测试核的每个列元素中减去训练核列的平均值,接着从最近修改后的测试核的每个行元素中减去平均行值。需要注意的是,核不一定是方阵。

2. 核回归方法比较
2.1 方法介绍

在基准研究中考虑的不同方法包括:
1. 线性偏最小二乘(PLS)
2. 线性近端支持向量机(P - SVM Lin)
3. Rosipal和Trejo提出的带核中心化的K - PLS算法(K - PLS)
4. 直接核偏最小二乘(DK - PLS),直接对中心化后的核矩阵进行分解
5. 最小二乘支持向量机(LS - SVM),也称为核岭回归,应用于中心化后的核
6. 最小二乘支持向量机的简化形式(LS - RSVM),应用于中心化后的核
7. SVM - Torch中实现的经典SVM,该方法的核不进行中心化

其中,LS - SVM通过求解以下方程组得到解:
((K + \lambda I)\alpha = y) (11.22)
得到函数:
(f(x) = y^T(K + \lambda I)^{-1}k) (11.23)
其中 (k_i = K(x, x_i), i = 1, \ldots, m)。

LS - RSVM方法通过求解以下方程构建:
((K^TK\alpha - \l

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 最小二乘回归的基本原理 最小二乘回归是一种用于建立因变量 \( y \) 和自变量 \( X \) 之间线性关系的方法。它的心目标是最小化残差平方和(RSS, Residual Sum of Squares)。具体而言,它通过寻找参数 \( \beta \),使得模型预测值与真实值之间的误差平方和达到最小。 #### 数学推导过程 设多元线性回归模型为: \[ y = X\beta + \epsilon \] 其中: - \( y \in \mathbb{R}^n \) 是观测值向量, - \( X \in \mathbb{R}^{n \times p} \) 是设计矩阵,每一列代表一个特征, - \( \beta \in \mathbb{R}^p \) 是待估参数向量, - \( \epsilon \sim N(0, \sigma^2I_n) \) 表示随机噪声项[^1]。 为了找到最优的参数估计 \( \hat{\beta} \),定义残差平方和为目标函数: \[ RSS(\beta) = \|y - X\beta\|^2_2 = (y - X\beta)^T(y - X\beta) \] 展开并整理得到: \[ RSS(\beta) = y^Ty - 2\beta^TX^Ty + \beta^TX^TX\beta \] 对 \( \beta \) 求偏导数,并令其等于零以获得极值点: \[ \frac{\partial RSS}{\partial \beta} = -2X^Ty + 2X^TX\beta = 0 \] 由此得出正规方程组: \[ X^TX\beta = X^Ty \] 在满足 \( X^TX \) 可逆的情况下,最终解得: \[ \hat{\beta} = (X^TX)^{-1}X^Ty \][^2]. 此公式的几何意义在于,\( \hat{\beta} \) 将原始数据投影到了由 \( X \) 列空间张成的子空间中,从而实现了最佳拟合。 #### 在机器学习中的应用 在机器学习领域,最小二乘法被广泛应用于监督学习任务中的回归问题解决。例如在线性回归算法里,它是用来估算权重系数的心技术手段之一。此外,尽管现代深度学习框架更多依赖梯度下降优化方法来处理复杂非线性映射场景下的损失函数最小化问题,但对于简单的线性情况或者作为初始化阶段的一部分,仍然可以看到传统最小二乘思路的身影[^3]。 #### 统计学视角下的特性 从统计角度看,当假设误差服从独立同分布正态分布时,则依据高斯马尔科夫定理可知,在所有线性无偏估计器当中,普通最小二乘估计具备最小均方误差的特点,成为所谓的“最佳线性无偏估计”(Best Linear Unbiased Estimator, BLUE)[^1]. 这一理论基础赋予了OLS强大的适用性和可靠性保障。 ```python import numpy as np def ols_estimate(X, y): """ 使用最小二乘法计算β的估计值 参数: X : ndarray -- 设计矩阵(n_samples, n_features) y : ndarray -- 目标向量(n_samples,) 返回: beta_hat : ndarray -- 参数估计值(n_features,) """ Xt_X_inv = np.linalg.inv(np.dot(X.T, X)) Xt_y = np.dot(X.T, y) beta_hat = np.dot(Xt_X_inv, Xt_y) return beta_hat ``` 上述代码展示了如何手动实现基于最小二乘法的参数估计流程[^4]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值