核偏最小二乘回归的优化视角
1. 核中心化操作
核中心化是核方法中的重要步骤。对于训练核,先从列元素中减去列的平均值,然后从每一行元素中减去修改后训练核行的平均行值。训练的平均列值可以存储在内存中,用于以类似的方式对测试核进行中心化。对于测试核的中心化,先从测试核的每个列元素中减去训练核列的平均值,接着从最近修改后的测试核的每个行元素中减去平均行值。需要注意的是,核不一定是方阵。
2. 核回归方法比较
2.1 方法介绍
在基准研究中考虑的不同方法包括:
1. 线性偏最小二乘(PLS)
2. 线性近端支持向量机(P - SVM Lin)
3. Rosipal和Trejo提出的带核中心化的K - PLS算法(K - PLS)
4. 直接核偏最小二乘(DK - PLS),直接对中心化后的核矩阵进行分解
5. 最小二乘支持向量机(LS - SVM),也称为核岭回归,应用于中心化后的核
6. 最小二乘支持向量机的简化形式(LS - RSVM),应用于中心化后的核
7. SVM - Torch中实现的经典SVM,该方法的核不进行中心化
其中,LS - SVM通过求解以下方程组得到解:
((K + \lambda I)\alpha = y) (11.22)
得到函数:
(f(x) = y^T(K + \lambda I)^{-1}k) (11.23)
其中 (k_i = K(x, x_i), i = 1, \ldots, m)。
LS - RSVM方法通过求解以下方程构建:
((K^TK\alpha - \l
超级会员免费看
订阅专栏 解锁全文
2030

被折叠的 条评论
为什么被折叠?



