25、优化部署频率与策略,提升服务稳定性

优化部署频率与策略,提升服务稳定性

在当今数字化的时代,服务的稳定性和部署效率是企业成功的关键因素。接下来,我们将深入探讨如何通过优化部署频率和策略,有效提升服务的稳定性。

1. DORA 指标概述

DORA 指标包含了速度指标和稳定性指标,且速度指标会对稳定性指标产生影响。以下为不同绩效水平下各项指标的具体数值:
| 指标 | 精英水平 | 高绩效水平 | 中等绩效水平 | 低绩效水平 |
| — | — | — | — | — |
| 部署频率 | 每天多次 | 每周至每月一次 | 每月至每六个月一次 | 每六个月少于一次 |
| 变更前置时间 | 少于 1 小时 | 1 天至 1 周 | 1 个月至 6 个月 | 超过 6 个月 |
| 服务恢复时间 | 少于 1 小时 | 少于 1 天 | 1 天至 1 周 | 超过 6 个月 |
| 变更失败率 | 0 - 15% | 16 - 30% | 16 - 30% | 16 - 30% |

某公司目前的 DORA 指标表现如下:
- 部署频率:每周一次(高绩效水平)
- 变更前置时间:少于 1 周(高绩效水平)
- 服务恢复时间:至少 1 天,通常为多天(中等绩效水平)
- 变更失败率:年平均 10%,近期约为 33%(接近低绩效水平)

从这些指标可以看出,该公司在速度指标方面表现出色,但在稳定性指标上存在一定的提升空间。

2. 不同部署频率的影响
2.1 减少部署频率

公司成员阿奇提出减少部署频率,即从每周一次改为每月一次,以解决服务中断问

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值