基于最优控制和模型预测控制的车辆自适应巡航控制研究

本文探讨了一种使用最优控制和模型预测控制(MPC)的车辆自适应巡航控制系统,通过Carsim与Matlab联合仿真实现速度与间距精确控制,提升驾驶安全与舒适性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于mpc(最优控制)的车辆自适应巡航控制(acc),模型预测控制,通过carsim与matlab联防实现速度与间距控制。
最优控制(MPC):最优控制是一种优化方法,用于设计系统的控制策略,以使系统在给定约束条件下达到最优性能。
车辆自适应巡航控制(ACC):车辆自适应巡航控制是一种智能驾驶技术,通过使用传感器和控制算法,使车辆能够自动调整速度和与前车的间距,以保持安全距离并提供舒适的驾驶体验。
模型预测控制(MPC):模型预测控制是一种控制方法,它使用系统的数学模型来预测未来的系统行为,并根据这些预测进行控制决策,以实现所需的性能指标。
Carsim:Carsim是一种用于车辆动力学仿真的软件工具,它可以模拟车辆的运动行为和性能。
Matlab:Matlab是一种数值计算和科学仿真软件,它提供了丰富的工具和函数,用于进行数学建模、数据分析和控制系统设计。
延申科普: 车辆自适应巡航控制(ACC)是智能驾驶技术中的一项重要应用。ACC系统通过使用雷达、激光等传感器来感知前方车辆的位置和速度,并使用最优控制和模型预测控制方法来计算出最佳的速度和间距控制策略。ACC系统可以在高速公路等道路上自动调整车辆的速度,以保持与前车的安全距离,并根据交通状况和驾驶者的偏好提供舒适的驾驶体验。

最优控制(MPC)是一种优化方法,它在控制系统设计中起着重要作用。MPC使用系统的数学模型来预测系统未来的行为,并根据这些预测进行控制决策,以实现所需的性能指标。MPC可以应用于各种领域,如工业过程控制、机器人控制和交通系统控制等。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值