最大公约数GCD与最小公倍数LCM

一、最大公约数(GCD)

    最大公约数的递归:1、若a可以整除b,则最大公约数是b 2、如果1不成立,最大公约数便是b与a%b的最大公约数。

辗转相除法。

1.欧几里得算法(辗转相除法)

int gcd(int a,int b) 
{
    return b==0?a:gcd(b,a%b);
}
设两数为a、b(a>b),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。

二、扩展欧几里得算法(GCD)

  1. void gcd(int a,int b,int& d,int& x,int& y)

  2. {

  3. if(!b) { d=a;x=1;y=0; }

  4. else { gcd(b,a%b,d,y,x); y-=x*(a/b); }

  5. }

扩展欧几里得算法(英语:Extended Euclidean algorithm)是欧几里得算法(又叫辗转相除法)的扩展。已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式

如果a是负数,可以把问题转化成

,然后令x'=(-x)。

通常谈到最大公约数时,我们都会提到一个非常基本的事实:给予二个整数a、b,必存在整数x、y使得ax + by = gcd(a,b)

有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数——这是众所周知的。然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的整数解。

扩展欧几里得算法可以用来计算模反元素(也叫模逆元),而模反元素在RSA加密算法中有举足轻重的地位。

三.最小公倍数

  

当我们知道两个数的最大公约数gcd以后再求两个数的最小公倍数lcm就很好求了。

lcm(A,B)=A*B/gcd(A,B);因为A*B可能会溢出int而且A和B都是gcd的倍数,所以一般这样写lcm(A,B)=A/gcd(A,B)*B;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值