- 博客(2721)
- 资源 (9)
- 收藏
- 关注
原创 Elastic 9.3:与数据对话、构建自定义 AI agents、实现全自动化
Elastic 9.3正式发布,带来多项创新功能:新增Elastic Workflows技术预览,实现数据自动化处理;Elastic Agent Builder正式上线,简化AI代理开发;集成Jina AI模型提供多语言嵌入能力;通过NVIDIA cuVS实现GPU加速向量索引,提升12倍吞吐量。在可观测性方面,新增日志压缩和Amazon Bedrock集成;安全功能增强实体风险分析和自动化响应。该版本还优化了Elastic Cloud Serverless性能,搜索延迟降低35%。这些更新进一步强化了El
2026-02-04 15:01:47
792
原创 Elastic 线下 Meetup 将于 2026 年 3 月 21 号下午在上海举行
2026年3月21日,ElasticMeetup上海站将在徐汇区模速空间举办。活动由Elastic、悦高软件和新智锦绣联合主办,聚焦Elasticsearch技术与AI应用。主要内容包括:Elastic社区布道师刘晓国分享向量搜索及AI Agents开发;腾讯云、阿里云专家解析百亿级AI搜索实践;悦高软件介绍多源实时CDC同步引擎ElasticRelay;以及Elastic中国架构师朱杰探讨AI驱动的可观测解决方案。活动还设有茶歇交流及抽奖环节。报名链接:https://elastic.huodongxin
2026-01-30 08:36:34
1476
原创 Elastic:DevRel 通讯 — 2026 年 1 月
Elastic DevRel团队发布2026年1月通讯,重点介绍Elastic Stack 9.2版本新功能:包括Elastic Agent Builder框架、AI驱动的日志摘要Streams、增强的ES|QL查询语言等。同时推出Elastic Inference Service(EIS)支持Jina模型,实现多语言语义搜索。通讯还包含技术博客、视频教程链接和社区活动信息,涉及安全、可观测性等主题。新版本通过Disk BBQ等技术显著提升向量搜索效率,并优化存储性能。
2026-01-13 07:34:42
1137
原创 Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师
Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..
2020-10-28 11:54:13
26957
19
原创 Elastic:开发者上手指南
你们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster,n..........................................................
2020-02-25 20:01:55
170719
105
原创 Elastic:培训视频 - 在生产环境中配置 Fleet Server 和 Elastic Agent 之间的安全
在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...............
2020-01-06 15:31:54
18462
12
原创 Elasticsearch 简介
Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...
2019-08-08 16:04:31
176170
32
原创 弥合差距:从云原生到大型机的端到端可观测性
摘要:本文探讨了在混合企业环境中实现端到端可观测性的解决方案。通过结合IBM Z Observability Connect和Elastic Observability,可以解决现代云原生应用与IBM主机系统交互时的可观测性挑战。OpenTelemetry作为标准,将主机系统纳入统一监控,消除"断裂的Trace"问题。文章详细介绍了架构实现,包括Collector、Processor和Consumer的配置,并强调了OTel规范的重要性。该方案实现了从现代应用到IBM主机的端到端可视化,
2026-02-09 15:08:38
168
原创 使用 OpenTelemetry 和 Elastic Streams 进行 Windows 事件日志监控
本文介绍了如何通过OpenTelemetry和Elastic Streams优化Windows事件日志监控。传统方法面临日志量大、解析困难等问题,而新方案采用标准化OTel收集器进行数据摄取,结合AI驱动的流式分区技术自动分类日志类型。更重要的是利用LLM模型理解日志语义,自动识别关键事件(如服务崩溃、启动失败等)并生成警报建议,实现了从被动存储到主动分析的转变。这种AI增强的监控方式显著提升了Windows基础设施的可观测性,使管理员能够更高效地从海量日志中提取有价值信息。
2026-02-09 14:19:05
672
原创 使用 Elastic Agent Builder 和 OpenTelemetry 观察设备
摘要:Elastic专家Poornima Ramakrishnan分享了如何利用Elastic AgentBuilder和OpenTelemetry实现家庭IoT设备可观测性。通过将智能家电数据接入Elastic Cloud Serverless,系统实现了自然语言查询、实时监控和异常检测。AgentBuilder技术将原始数据转化为交互对话,使非技术人员也能轻松获取洞察。实验证明可观测性原理不仅适用于企业系统,任何产生数据的设备都能提供有价值的信息,让数据真正"开口说话"。(149字)
2026-02-09 14:04:47
642
原创 在 GCP 上使用 EDOT Cloud Forwarder 进行 OpenTelemetry 日志摄取的规模测试
本文介绍了在Google Cloud Run上对EDOT Cloud Forwarder进行负载测试的方法,通过调整运行时参数优化性能。测试发现:1) 设置cpu_idle:false可避免GC饥饿;2) 将GOMEMLIMIT设为容器内存90%能防止OOM;3) 默认GOGC=100提供最佳平衡。结果表明1vCPU实例最多处理10个并发重负载请求,建议采用水平扩展策略。这些调优显著提升了服务稳定性,为类似serverless应用提供了配置参考。
2026-02-09 10:25:53
584
原创 使用 Groq 与 Elasticsearch 进行智能查询
摘要:Elasticsearch与Groq硬件推理引擎结合,显著提升LLM查询速度。Groq的LPU芯片架构专为高速LLM推理设计,能保持毫秒级响应时间。通过案例演示,使用Groq可将自然语言搜索延迟从1.5秒降至250ms,满足SLA要求。Elastic Agent Builder现已支持Groq连接,测试显示其性能比内置LLM快3倍。这种组合为图像理解、摘要生成等实时AI应用开辟了新可能。
2026-02-07 06:42:35
744
原创 Elasticsearch:Workflows 介绍 - 9.3
工作流(Workflow)是一个通过自动化来实现特定结果的、已定义的步骤序列。它是一个可复用、可版本化的 “配方”,用于将输入转化为行动。为什么要使用工作流仅仅洞察数据还不够。真正的价值在于行动和结果。工作流完成了从数据到洞察再到自动化结果的完整路径。你的关键运维数据已经存在于 Elastic 集群中:安全事件、基础设施指标、应用日志以及业务上下文。工作流让你可以在数据所在的位置直接实现端到端流程自动化,而无需依赖外部自动化工具。工作流解决了常见的运维挑战,例如:告警疲劳:通过自动化响应来减少人工
2026-02-06 14:56:44
615
原创 Elasticsearch:ES|QL 支持 dense vector 搜索
本文介绍了如何在Elasticsearch Query Language (ES|QL)中使用dense_vector字段进行向量搜索。主要内容包括:1)基础检索vector数据的方法;2)使用KNN函数进行近似搜索及其参数配置;3)将KNN与过滤器结合使用;4)使用vectorsimilarity函数进行精确搜索;5)实现语义搜索和混合搜索;6)自定义评分功能。文章强调ES|QL使向量搜索更简单,能自动处理prefilters和参数,并支持与文本搜索无缝集成。未来还将增加更多向量运算功能。
2026-02-06 11:36:15
910
原创 2026 年可观测性趋势(第 2 部分): GenAI 和 OpenTelemetry 重塑格局
摘要:最新调查显示,生成式AI和OpenTelemetry正重塑企业可观测性领域。85%的组织已采用GenAI进行可观测性分析,预计两年内将达98%,主要应用于数据关联、根因分析等场景。OpenTelemetry采用率翻倍,11%已投入生产。报告指出,供应商需重点集成GenAI功能、完善OTel支持并提供LLM可观测性方案,这些将成为2026年评估可观测性平台的核心标准。尽管当前GenAI效率提升有限,但未来五年预计显著增长,同时安全和幻觉问题仍需重视。(149字)
2026-02-06 09:37:20
699
原创 介绍 Elastic Workflows:用于 Elasticsearch 的原生自动化
Elastic推出内置在Elasticsearch中的自动化引擎Elastic Workflows,将脚本化自动化和AI驱动的自动化统一在一个平台中。该方案解决了数据孤岛问题,无需构建额外集成即可直接访问数据上下文,同时兼顾传统自动化的可靠性与AI的推理能力。Workflows采用YAML定义,支持事件驱动和组合调用,并与Elastic Agent Builder的AI代理深度集成,使代理既能推理又能执行具体操作。该技术现以预览版提供,适用于安全分析、SRE运维等场景,帮助用户在不牺牲控制力的前提下提升自动
2026-02-05 18:07:36
644
原创 跳过 MLOps:通过 Cloud Connect 使用 EIS 为自管理 Elasticsearch 提供托管云推理
Elastic推出CloudConnect的Elastic Inference Service(EIS),为自管理Elasticsearch用户提供混合架构解决方案,解决语义搜索和RAG应用中的MLOps与硬件瓶颈问题。该服务允许本地集群将计算密集的模型推理任务委托给Elastic Cloud的GPU集群,同时保持数据本地存储。通过简单配置即可使用Jina等先进模型进行语义搜索,并可直接访问Claude等LLM模型实现RAG功能,无需管理GPU基础设施或处理API密钥。EIS现已在Elastic Stack
2026-02-05 16:11:07
1041
原创 Elasticsearch:使用 Base64 编码字符串加速向量摄取
Elasticsearch推出Base64编码向量提升索引性能。通过将JSON浮点数组转换为Base64字符串,消除了数值解析瓶颈,使DiskBBQ索引吞吐量提升100%,HNSW提升20%。v9.3版本已支持客户端自动转换,仅需最小代码改动即可获得显著性能提升。这一改进使Base64成为高吞吐量环境下向量摄取的优选方案。
2026-02-05 12:35:33
636
原创 Jina Rerankers 为 Elastic 推理服务(EIS)带来了快速、多语言的重排序能力
Elastic在EIS上推出jina-reranker-v2和v3多语言重排序模型,支持直接在Elasticsearch中实现高精度检索和RAG工作流。v2作为紧凑型模型支持函数调用和大规模推理,v3则通过listwise重排序提供更优性能。这些模型可与jina-embeddings-v3结合使用,开发者无需管理基础设施即可构建多语言搜索管道。Elastic Cloud试用用户现可体验这些功能。
2026-02-04 12:06:01
1145
原创 Elasticsearch:使用 Elastic Workflows 构建自动化
摘要:Elastic推出工作流自动化功能,通过YAML定义实现Elasticsearch平台内的自动化流程。工作流包含触发器、输入参数和执行步骤,支持查询数据、条件分支、调用API及集成外部服务。文章演示了创建国家公园索引的示例工作流,展示索引操作、条件逻辑和数据流转功能,并介绍了与AI代理的集成方式。该功能目前处于技术预览阶段,可用于搜索、可观测性和安全等场景的自动化处理。
2026-02-04 11:19:29
1347
1
原创 金融服务公司如何大规模构建上下文智能
摘要:金融服务行业正从传统数据访问向"数据无处不在"的智能决策模式转变。Elastic通过实时上下文搜索技术,帮助金融机构实现嵌入式智能决策。其解决方案整合结构化/非结构化数据流,支持欺诈检测、合规审查等实时应用,同时通过Streams实现持续数据处理和AgentBuilder确保人工监督。领先机构已采用该技术统一数据基础,提升决策速度与准确性。这种企业级数据能力将成为2030年金融机构的核心竞争力。(149字)
2026-02-03 16:32:06
872
原创 上下文工程:金融服务中构建可信 AI 的缺失层
金融服务AI面临的关键挑战已从模型能力转向上下文管理。Elastic提出"上下文工程"概念,强调在实时性、治理和可解释性方面为AI系统提供支持。文章指出,金融行业特有的监管要求、数据分散性和实时决策需求,使得上下文管理成为AI应用的决定性因素。Elastic平台通过统一数据、强化治理、支持复杂查询等功能,帮助金融机构构建可信的AI决策系统,在欺诈检测、客户服务、风险管理等场景实现可靠应用。文章认为,未来金融AI的竞争优势将取决于上下文管理能力,而非单纯的算法性能。
2026-02-03 15:58:31
972
原创 Elasticsearch:生产级生成式 AI 沙箱的实践指南
作者:来自 Elastic探索用于生成式 AI 沙箱的配方,为开发者提供一个安全的环境来部署应用原型,同时实现隐私和创新。动手体验 Elasticsearch:深入了解我们的,开始一个,或者现在就在你的上尝试 Elastic。构建生成式 AI(GenAI)应用正在风靡一时,而上下文工程(context engineering),也就是为大型语言模型(- LLM)提供所需的提示结构和数据,使其在不自行补全缺失信息的情况下返回具体且相关的答案,是过去 24 个月中出现的最受欢迎的模式之一。
2026-02-03 08:11:02
814
原创 Elasticsearch:用于 LLMs 和搜索引擎的查询重写策略以改善结果
本文探讨了利用大型语言模型(LLMs)优化搜索引擎查询重写的策略。研究聚焦于词汇关键词扩展、伪答案生成等方法,通过将LLM输出与Elasticsearch查询模板结合,显著提升了搜索相关性和召回率。实验结果表明,在词汇搜索中,基于伪答案生成的提示策略表现最佳,而混合搜索场景下则需保持原始查询权重。文章还验证了小语言模型在该任务中的可行性,并提出了针对特定领域的优化建议。这种模块化、任务导向的查询优化方法为现代搜索管道设计提供了新思路。
2026-01-31 10:22:56
914
原创 使用 LangGraph 和 Elasticsearch 构建 人机协同( HITL )AI agent
本文探讨了如何结合LangGraph和Elasticsearch构建人机协同(HITL)系统。该系统通过让用户参与决策过程,提升了AI输出的可靠性和上下文感知能力。文章以法律案例查询为例,展示了工作流程:系统先通过Elasticsearch检索相关判例,然后让律师选择最相关的案例,在生成初步分析后检测歧义并请求用户澄清,最终生成完整法律意见。这种架构适用于多种低容错场景,如合规审查和决策支持,既能保持系统效率,又能确保人工干预只在必要时触发。
2026-01-30 08:18:20
685
原创 Elasticsearch:使用 Elastic Workflows 构建自动化 - 9.3
本文介绍了Elastic Workflows的核心功能和使用方法。Elastic Workflows是内置在Elasticsearch平台中的自动化引擎,通过YAML定义工作流,支持触发器、输入参数和多步骤执行。工作流可以查询Elasticsearch、转换数据、调用外部API,并与Slack、Jira等服务集成。文章通过创建国家公园索引的示例演示了工作流的基本操作,包括条件分支、数据传递等核心功能,并展示了如何结合AI生成诗歌并发送到Slack。最后指出Workflows未来将与Agent Builder
2026-01-29 14:50:16
718
1
原创 Elastic Support 如何利用 AI 提供更快、专家验证的解决方案
Elastic推出"人机协作"技术支持方案,将AI与专家经验深度融合。该方案采用四步流程:检查自助服务历史、理解核心需求、验证知识库、复现问题。AI扮演三种角色:研究助手、环境复现器、解决方案编辑器,但最终决策权始终在人工专家手中。客户可通过反馈机制帮助优化服务。Elastic同时开放AgentBuilder工具,支持企业构建自己的AI助手。这种协作模式既发挥AI的高效处理能力,又保留人类专家的关键判断,为客户提供更可靠的技术支持体验。
2026-01-29 11:02:52
667
原创 Elastic 和 Alteryx:为企业 agents 提供可信、可搜索的数据基础
Elastic与Alteryx合作推出集成解决方案,将Alteryx的数据治理平台与Elasticsearch向量数据库相结合,为企业构建可靠的AI代理系统。该方案通过Alteryx进行数据清洗和转换,利用Elasticsearch实现高效语义检索,为LLM提供准确上下文,减少AI幻觉。这种端到端的RAG工作流可应用于知识管理、智能客服和合规质检等场景,帮助企业快速部署可信的AI应用,提升决策效率和数据价值转化。
2026-01-29 08:02:14
605
原创 Elasticsearch:Apache Lucene 2025 年终总结
2025年Apache Lucene迎来爆发式增长:全年完成1,756次提交和8个版本发布,社区新增98位贡献者。性能优化成效显著,查询速度提升60%达到170qps,主要受益于自动向量化、SIMD优化及批量打分等创新。向量搜索领域实现三大突破:ACORN算法提升过滤搜索效率、多段搜索优化并发一致性、批量打分接口显著降低计算开销。运维层面改进包括堆外内存监控和HNSW索引优化。尽管修复一个复杂bug耗时月余仅用一行代码,但体现了社区的技术实力。随着9位新committer和2位PMC成员的加入,这个拥有25
2026-01-29 07:47:37
930
1
原创 使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
本文介绍了如何使用Elastic Agent Builder的Agent-to-Agent(A2A)服务器构建游戏社区Discord机器人。通过ES|QL工具实现游戏数据分析(如排行榜、英雄统计),并结合语义搜索工具回答游戏机制问题。文章详细说明了数据准备、工具创建、Agent配置和Discord集成过程,展示了如何让机器人既能回答结构化查询("当前meta是什么?")又能处理非结构化问题("如何解锁坐骑?")。这种方案让游戏公司能通过玩家日常使用的Discord平台
2026-01-28 09:55:32
974
1
原创 金融服务公司如何大规模构建上下文智能
摘要:文章探讨了数据普及在金融服务行业的应用趋势,指出到2030年成功将取决于将智能嵌入系统和决策流程。Elastic通过实时上下文搜索、Streams数据流处理和AI代理构建等技术,帮助金融机构实现欺诈检测、合规监控等场景的智能化。领先机构已通过统一数据基础、实时分析和人工监督相结合的方式,在提升效率的同时确保可解释性。Elastic的解决方案使企业能够构建可重用的智能数据层,在保证安全合规的前提下加速决策,实现真正的数据普及。
2026-01-27 08:45:55
640
原创 Elasticsearch:一切都与这些分块有关!
Elasticsearch推出新功能优化LLM上下文处理,包括chunk提取和snippet选择技术。文章重点介绍了两种核心功能:1) chunk_rescorer可识别长文档中最相关片段供重排序模型评估,显著提升Cohere等模型在MLDR数据集上的NDCG得分;2) ES|QL语言新增CHUNK和TOP_SNIPPETS函数,支持灵活提取文本片段并直接用于LLM上下文或重排序。这些创新解决了长文档处理中的上下文衰减问题,为构建更精准的SearchAI体验提供了新工具。
2026-01-27 07:55:25
772
原创 Elasticsearch:使用 `best_compression` 提升搜索性能
【摘要】本文探讨了Elasticsearch中best_compression功能在搜索性能优化中的意外价值。传统认知将其视为存储优化手段,但实验表明:当数据集超出内存容量时,启用zstd压缩(best_compression)可使索引体积缩减25%,显著降低page faults和I/O瓶颈。在5亿文档的高并发测试中,搜索延迟降低50%至30ms以下,且CPU利用率未增加。这一发现为内存受限场景提供了替代水平扩展的新思路,通过压缩优化缓存利用率来提升性能。研究还指出未来可结合索引排序进一步优化存储效率。
2026-01-24 08:07:32
833
2
原创 使用 Elastic Agent Builder 构建语音 agents
本文介绍了如何使用Elastic Agent Builder和LiveKit构建语音助手。2026年将成为语音助手商业化的重要一年,通过结合低延迟转录、快速LLM和自然语音合成技术,语音助手能够打破传统AI交互的限制。文章详细解析了语音流水线的四个关键组件:语音转文字、轮次检测、LLM处理和文字转语音,并以虚构的户外用品店Elastic Sport为例,展示了如何配置具备业务数据访问能力的语音助手。该方案支持产品查询、订单跟踪和短信发送等功能,可广泛应用于客服、销售预约等多种场景。
2026-01-23 10:45:38
845
原创 Agent Builder,超越聊天框:推出增强型基础设施
摘要:Elastic团队开发了基于ElasticAgentBuilder的增强型基础设施解决方案,突破传统AI代理仅能建议而无法操作的局限。该方案通过分布式runner架构,使代理能够直接管理基础设施,包括部署、监控和修复实时环境。核心创新包括:1)使用Elasticsearch作为中间层处理工具调用;2)开发workflow系统实现异步操作;3)支持跨Kubernetes、云环境等多平台操作。演示场景显示其能自动完成Kubernetes可观测性部署和安全漏洞修复。该技术可扩展至开发、运维等多个领域,标志着
2026-01-23 09:57:28
809
原创 Agent Builder 现已正式发布:在几分钟内发布上下文驱动的 agents
摘要:Elastic正式发布AgentBuilder工具,帮助开发者快速构建基于上下文的AI智能体。该工具整合Elasticsearch的搜索能力和向量数据库功能,支持对话式智能体开发、混合搜索、工作流自动化等核心功能。通过内置工具和API集成,开发者可以快速将企业数据转化为智能体应用,同时保持对数据、模型和安全性的完全控制。AgentBuilder已在基础设施管理、安全分析、客户支持等多个场景成功应用,现已在ElasticCloudServerless中可用,并将随9.3版本正式发布。
2026-01-23 09:04:28
1520
1
原创 Elasticsearch:如何使用 LLM 在摄入数据时提取需要的信息
本文介绍了如何利用LLM(大语言模型)在Elasticsearch的ingest pipeline中实现自动化数据提取。通过创建chat completion端点并定义EXTRACTION_PROMPT变量,系统能够在数据摄入时自动提取结构化信息(如产品类别、特征和使用场景)。文章详细演示了从创建pipeline、模拟测试到实际应用的全过程,最终实现了产品数据的智能结构化处理,为后续的搜索和统计分析提供了便利。这种方法显著提升了数据处理效率,适用于各类需要结构化数据的应用场景。
2026-01-22 22:07:07
646
原创 Elasticsearch:监控 LLM 推理和 Agent Builder 使用 OpenRouter
本文介绍了如何利用OpenRouter的OpenTelemetry广播功能和Elastic APM来监控AgentBuilder及推理流水线中的LLM使用情况。通过OpenRouter统一访问500多个模型,避免了管理多个供应商的复杂性。文章详细展示了构建AI音频产品目录的完整流程:创建AI连接器和推理端点,配置数据摄取流水线,以及建立AgentBuilder智能体。重点阐述了如何设置OpenRouter广播功能,将模型使用数据发送到Elastic进行监控,并创建定制化仪表板来跟踪性能指标、token用量和
2026-01-22 16:09:00
918
原创 Elasticsearch:上下文工程 vs. 提示词工程
本文探讨了提示词工程与上下文工程的关键区别及其在构建AI系统时的协同作用。提示词工程聚焦于优化单次交互的指令表述,解决歧义问题;而上下文工程则管理模型可访问的信息流,处理检索、多轮对话和工具编排等系统级挑战。随着AI系统复杂度提升,两者分工日益明显:提示词工程确保精准提问,上下文工程保障模型获取适量相关信息。文章通过图书推荐案例展示了二者如何配合:良好提示词提供明确需求,有效上下文工程则精准筛选海量数据。生产级AI系统需要同时掌握这两种互补技能,如同Web开发中UI与UX的协作关系。
2026-01-21 09:02:40
816
原创 提升全局操作:掌握使用 Fleet 的 多集群 Elastic 部署
摘要:Elastic Stack针对全球化企业的分布式部署需求,推出了多集群Fleet管理方案,解决了数据主权、性能优化与集中管理的矛盾。通过分离agent数据存储与管理控制平面,实现本地数据路由与全局统一视图。新增的集成同步功能确保安全策略一致性,空间感知和细粒度权限则支持企业级隔离。这些9.1版本的功能使组织能在遵守数据合规的同时,获得集中化运维效率,降低跨区域成本,为全球化部署提供"单一管理界面"。(149字)
2026-01-20 14:38:36
734
05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示
2025-04-19
ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521
2025-05-22
03-Elasticsearch 数据流转之道 - 从写入到查询的技术探秘 尚雷.南京 20250628
2025-06-28
【AIOps领域】基于M02-双 MCP 赋能ES Luke 南京 20250628CP框架的Elasticsearch与Kibana智能根因分析系统设计:提升企业数据洞察效率和自动化运维能力
2025-06-28
Elasticsearch 可搜索快照 - 降本增效的实践与探索 线上 夏乔 20250717
2025-07-18
02-腾讯云 ES 百亿级 AI Search 优化实践 陈曦 深圳 20250727
2025-07-30
03-Elastic - Agentic RAG 构建之路 李捷 深圳 20250727
2025-07-30
00-Elastic Pioneer-项目
2025-04-19
04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419
2025-04-19
04-ES日志集群大规模迁移实践-李猛-南京-20250618
2025-06-28
04-Elasticsearch 在日志系统的应用 石樊 深圳 20250727
2025-07-30
01-基于Elastic地理位置检索-搜索附近 j九川 线上 20250806
2025-08-07
【大数据知识库】基于Qwen2.5-14B与Elasticsearch的智能问答系统设计:传统检索与向量检索对比及RAG架构应用
2025-07-10
腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605
2025-06-05
03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419
2025-04-19
02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419
2025-04-19
告别中间件繁琐:ES 9.2 Streams 打造 一站式 实时分析平台 - 程地华 线上 20260121
2026-01-21
04-搜索范式 - 从排序到过滤的转变 - 王峰 北京 20260110
2026-01-11
03-腾讯云ES在搜索场景与AI能力的建设分享-师文博 北京 20260110
2026-01-11
01-Elasticsearch 向量搜索及 AI Agents - 刘晓国 20260110
2026-01-11
02-MCP 超级大脑:一键干掉传统 RAG 同时接管全链路 AIOps - Luke 北京 20260110
2026-01-11
01-Elasticsearch Mythbusters- 破除迷思,回归工程本质 - 李捷 线上 20260107
2026-01-08
01-Elasticsearch-KNN详解 - 刘琪 线上 20251218
2025-12-19
03-阿里云AI搜索年度总结和展望 - 张粲宇 西安 20251206
2025-12-06
02-ElasticSearch在专利与教育场景中的语义检索实践 - 王传健 西安1206
2025-12-06
01-AI 驱动 - 搜索的未来 - 刘晓国 西安 20251206
2025-12-06
Elasticsearch 8 四大工程 - 朱杰 20251202
2025-12-02
Elasticsearch 新一代查询语言- ES-QL 介绍与实战 -夏乔 - 20251120
2025-11-20
01-ElasticsearchCCR详解 线上 刘琪 20250820
2025-08-21
01-ES AI Assistant集成 DeepSeek-Qwen3,搭建智能运维助手 - 槐新 线上 20250903
2025-09-03
01-AI 驱动 - 搜索的未来 刘晓国 成都 20250906
2025-09-08
腾讯云 ES 百亿级 AI Search 优化实践 - 陈曦 - 20251112
2025-11-12
02-让成本更极致,腾讯云ES serverless一站式日志分析介绍-张小伟 成都 20250906
2025-09-08
03-Agentic RAG 构建之路 李捷 成都 20250906
2025-09-08
Elastic Support 概述 - 潘宁,赵守连,李洋 20251028
2025-10-28
Elasticsearch APM 和 EDOT 的实践与探索
2025-09-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅