『程序员』 [求职招聘]软件测试面试题,高手帮忙!!

程序设计 专栏收录该内容
3 篇文章 0 订阅
程序员』 [求职招聘]软件测试面试题,高手帮忙!!

 

 作者:janny161   提交日期:2005-12-8 19:32:18楼主
  有100个金币,其中有一个比较轻。给你一个天平,怎样用四次天平确认出哪个金币轻?
  

 作者:ViviHCW   回复日期:2005-12-8 20:13:001#
  晕啊
  想不出

 作者:lele9218   回复日期:2005-12-8 21:32:002#
  把这100个分成33,33,33,1
  
  应该明白了吧?
  
  如果还不明白的话,你还是赶紧转行吧,呵呵

 作者:seamankwok   回复日期:2005-12-8 22:50:003#
  还是不懂

 作者:newcon26   回复日期:2005-12-9 16:46:004#
  题目有问题吧是10个还差不多

 作者:雪地飞狼   回复日期:2005-12-9 19:32:005#
  把这100个分成33,33,33,1
    
    应该明白了吧?
    
    如果还不明白的话,你还是赶紧转行吧,呵呵
  
  我觉得这个是33,33,33,1是行不通的,
  因为如果你选出称的刚好相等的话,也就是说这个比较轻的不在第一次称的两个33里,也不在1这里,我就没办法用四次了(六次),
  
  如果是10个的话,三次就OK了
  
  如果你有办法,请相告一下

 作者:雪地飞狼   回复日期:2005-12-9 19:38:006#
  刚才错了,10的话,只要2次就够了

 作者:雪地飞狼   回复日期:2005-12-9 19:41:007#
  100个的,我最多只能算到了五次

 作者:火山休眠   回复日期:2005-12-9 20:24:008#
  同意33,33,33,1的方法
  完全能搞定
  

 作者:janny161   回复日期:2005-12-10 11:40:009#
  五次行的话我也不会到这来求助了!
  注意,一定是四次称出来!!

 作者:janny161   回复日期:2005-12-10 11:48:0010#
  请问“33,33,33,1的方法”怎么搞定?
  

 作者:janny161   回复日期:2005-12-11 9:20:0011#
  请问“33,33,33,1的方法”怎么搞定?

 作者:oflyfisho   回复日期:2005-12-11 21:26:0012#
  33 33 33 1完全能搞定,
  还是自己想吧,说出来就没意思了:)

 作者:janny161   回复日期:2005-12-12 10:00:0013#
  这样还是分不出来啊

 作者:tensoft   回复日期:2005-12-12 15:03:0014#
  33 33 33 1 可以确定那堆里有轻的
  10 10 10 3
  3 3 3 1
  1 1 1
  
  呵呵 应该是这样的

 作者:janny161   回复日期:2005-12-12 18:59:0015#
  你那种方法还是不行啊

 作者:oylq   回复日期:2005-12-12 22:10:0016#
  33 33 33 1 一二组不平衡
  33 第一次
  11 11 11
  11 第二次
  4 4 3 4
   4
  2 2 第三次
   2
  1 1 四次
  1
  
  33 33 33 1
  称得一二组平衡 结果为三四组 33+1 分为 第一次
  11 11 11 1
  称得 一二平衡 结果再三四组 11+1 分为 第二次
  4 4 4
  若一二平衡则为三组
  4分为 2 2 组 第三次
   2
  再称一次 出结果 共四次
  
  
  其它情况均类似。不可能解不出!本来就是一道逻辑性很强的题。
  

 作者:zhangsir199   回复日期:2005-12-13 15:42:0017#
  面试题目还挺难的嘛,这要是当时一下想不起来,那岂不太郁闷了

 作者:janny161   回复日期:2005-12-13 18:40:0018#
  “oylq”的方法好象还是要5次啊?

 作者:Spider_Q   回复日期:2005-12-14 14:37:0019#
  oylq:你的算法有问题!

 作者:fuzz   回复日期:2005-12-14 16:39:0020#
  oylq:一个组不平衡怎么办?

 作者:fuzz   回复日期:2005-12-14 16:40:0021#
  oylq:第一次称一.二个组不平衡怎么办?

 作者:fuzz   回复日期:2005-12-14 16:42:0022#
  我记得原来好象是10个,这个题目是不是错了

 作者:wenchangxing   回复日期:2005-12-15 17:15:0023#
  “oylq”的方法在前面都平衡的时候,已经称了5次了,在其他情况还可以,所以你的方法还是不行的。
  

 作者:wenchangxing   回复日期:2005-12-15 17:17:0024#
  不行啊,你们的方法行不通啊

 作者:wenchangxing   回复日期:2005-12-15 17:20:0025#
  我这有一个类示的题目:
   有12个球,有一个球不同,称三次,称出那一个不同,是轻还是重。

 作者:janny161   回复日期:2005-12-16 10:49:0026#
  这个题见过,称三次就行了!

 作者:棒棒糖好吃   回复日期:2006-2-21 15:29:0027#
  to: oylq,33 33 33 1
    称得一二组平衡 结果为三四组 33+1 分为 第一次
  先按照你的思路这样称,在你所谓的第一次的时候其实你已经称了两次了,这样你才能得出一二组平衡的概念,对吧,所以根本就是超出了4次,理解不了。

 作者:棒棒糖好吃   回复日期:2006-2-21 15:43:0028#
  oylg,我知道了,你说的正确。

 作者:西兹柯   回复日期:2006-2-22 14:16:0029#
  为虾米全部平衡的时候我称是五次啊?
  33 33 33 1
  11 11 11 1
  4 4 4
  2 2
  1 1
  
  

 作者:咸味海风   回复日期:2006-2-22 14:31:0030#
  世界成功学第一人“卡耐基”——— 成功经典笔记 《人性的优点》《人性的弱点》《光明致富路》《态度决定高度》《成功形象定位》广州出版社 仅售:18.00元 投资大脑——只赚不赔!!!————》》 中国各大书城书店有售 邮件:zhang520mp3@163.com 世界上什么最难?“说话”!?以上书籍教你几招!!!
  

 作者:夏末雨_1110   回复日期:2006-2-22 15:26:0031#
  这个知道一个轻或者重的方法如下:
  33 33 33 1--------------A
  如果平衡则换下一组33的此时(I=1) 如果还是平衡的话判定在 1 里面
  此时(I=2)
  如果I=2时不平衡时进入B
  如果刚开始即I=1不是平衡的话进入B
  10 10 10 3 ------------B
  取两组如果平衡此时(I=2+1 )或者(I=1+1 )换下一组10衡量此时(I=4 )或者(I=3 )如果还是平衡的话判定在3里面进入D就可以解决此时I=5或者I=4
  
  如果10的刚开始不平衡就进入C 此时I=2
  3 3 3 1-------------C
  此时再衡量如果平衡即I=3 就换下一组3 再衡量此时I=4还是平衡的话就不需要进行 可以判断了
  如果一开始就不平衡的话就进入D只需要衡量一下就可以判断了
  此时I=4了就(包括了衡量3 3 和1 1)
  1 1 1 ------D
  
  综合得到在知道了轻重的情况下最多需要5次
  如果不知道轻重的话则在第一次加一次判断就可以知道轻重 然后下面的同上
  
  总结的 需要 4 次 各位看清楚 这个是在知道那个球轻或者重的情况下
  
  

 作者:夏末雨_1110   回复日期:2006-2-22 15:36:0032#
  不好意思 最后一行多打上去的

 作者:夏末雨_1110   回复日期:2006-2-22 15:44:0033#
  这个是这样的方法 当然可以改进成:oylq 的方法
  
  就少了一次
  

 作者:fenggoodboy   回复日期:2006-7-12 16:01:0034#
  分成36 36 28
  如果在36中一次后12 12 12
  二次后 4 4 4
  三次后 2 1 1
  四次  1 1
  如果在28中分成12 12 4
  二次后最差情况在12中另4个正常
  二次后4 4 4
  三次 2 1 1
  四次 1 1

 作者:fenggoodboy   回复日期:2006-7-12 16:08:0035#
  本题显然最后一次是1 1或1 1 1或2 1 1
  每次乘以3,显然2 1 1最好然后4 4 4依此类推是
  36 36 28 推出28也符合3次条件

 作者:fenggoodboy   回复日期:2006-7-12 18:16:0036#
  修正:最后一次是1 1或1 1 1第三次是3 3 或3 3 3或4 4 4,
  33 明显不是3次就可以做到的,3 3 3上一次是9 9 9,再上次27 27 27 19,而这是无法确定到底在27,还是19中需要多一次,就是5次所以不对,第三次只能是4 4 4,然后是12 12 12然后是36 36 28

 作者:lb425   回复日期:2006-7-13 16:20:0037#
  完全同意oylq的做法,四次可以了

 作者:htuycc   回复日期:2006-10-12 21:40:0038#
  oylq还听能忽悠的
  
  两种方法个少算一次,还有人上当,呵呵

 作者:这小子真帅啊   回复日期:2006-10-12 23:56:0039#
  fenggoodboy的应该是正确的。。。

 作者:biozzy   回复日期:2006-10-13 15:24:0040#
  oylq遇到的称得一二组平衡的情况,实际上少算了第一次称!!大家擦亮眼睛看清楚了!goodboy的逆向思维才是正确的!!!

 作者:假如我是天使   回复日期:2006-10-13 17:51:0041#
  盛课盟IT培训
  机构简介:
  IT,我们的选择!高薪从这里开始!!!“成都盛课盟信息技术培训中心”面向高中端人士,以职业技能培训为发展方向,以培养优秀的IT专业人才为目标,开创了小班教学的实战培训模式。开展了实习培训——技能鉴定——就业推荐“一条龙”的服务,为机关企业单位培养和输送了更多更好的高技能人才,为IT产业的发展和西部地区国民经济的发展做出了积极的贡献。
  开设课程:
  1. JAVA软件工程师培训
  2. J2EE软件工程师培训
  3. UNIX开发工程师培训
  4. Linux开发工程师培训
  5. 软件测试工程师培训
  6. 高级平面设计师培训
  7. 网站开发工程师培训
  8. 高级办公自动化培训
  联系方式:
  成都盛课盟信息技术培训中心
  报名时间:每天9:00~21 :00(中午不休息),周六、日照常报名
  报名地点:成都市致民路36号锦江新园1801(新南门汽车站旁)
  联系人:喻小姐
  联系电话:028-85431814 ,13060073616
  QQ:675107546
  电子邮件:yuli19810920@sina.com
  官方网址:http://www.thinkmore.cn
  颁证机关:
  中华人民共和国劳动和社会保障部
  中国就业培训技术指导中心
  报名条件:
  报名学习者必须具有高中及以上学历,包括普通高中、职业高中、中专、大专、本科等;携带本人身份证复印件、最高学历原件和复印件一份(验证后原件退还)、近期一寸免冠照片2张报名。
  公交线路:
  6/8/13/21/28/35/43/48/55/76/82/110/307333/503等直接到新南路下车。
  教学特点:
  ² 各班次均实行10人以下小班教学,保证每一位学员的学习质量和进度;
  ² 着重学员的实际动手能力,通过项目实战让学员拥有相当于1—2年的项目经验;
  ² 项目教学:采用具体项目教学,让学生在教学中体验项目,在项目中完成教学;
  ² 老师均为高薪聘请的各大知名IT公司的技术总监、系统架构师、项目经理、高级工程师、资深平面设计师等行业精英来担任;
  ² 学员一期不会,下期免费再学;
  ² 学员在以后就业中遇到任何技术问题,均可获得本中心的技术支持。
  学员服务:
  住宿:可解决外地学员住宿问题,住宿费每天不超过10元;
  接站:外地报名学员可提前预约接站服务;
  优惠政策:学员提前十天报名可享受九五折优惠,提前二十天报名可享受九折优惠,提前一个月报名可享受八五折优惠。
  

 作者:断剑残阳   回复日期:2006-11-14 1:20:0042#
  为什么这么复杂,拿掉一个,每回分三堆。

 作者:断剑残阳   回复日期:2006-11-14 1:30:0043#
  补充:不够分三份把那个补回来。

 作者:lonlywolf   回复日期:2006-11-14 10:37:0044#
  断剑残阳的发言很简洁,也说出了算法的精髓.

 作者:ucmips   回复日期:2006-11-15 11:58:0045#
  作者:janny161 提交日期:2005-12-8 19:32:18
  
    有100个金币,其中有一个比较轻。给你一个天平,怎样用四次天平确认出哪个金币轻?
  ===================================
  此题至少五次
  
  因为一次称量只能分辨3组中的1组有不同(比如4个球,就不能在一次称量确定那个球有所不同)
  
  所以最终结果只能是:
  
  次数 分组 总数 规律
  1 1 1 1 3 3
  2 3 3 3 9 3×3
  3 9 9 9 27 3×3×3
  4 27 27 27 81 3×3×3×3
  5 81 81 81 243 3×3×3×3×3
  .................
  n 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n个3) 3×3...×3(n个3)
  
  12介于总数9和27之间,故至少3次
  所以100介于总数81和243之间,故至少5次,否则只是幸运

 作者:ucmips   回复日期:2006-11-15 12:03:0046#
  作者:janny161 提交日期:2005-12-8 19:32:18
  
    有100个金币,其中有一个比较轻。给你一个天平,怎样用四次天平确认出哪个金币轻?
  ===================================
  此题至少五次
  
  因为一次称量只能分辨3组中的1组有不同(比如4个球,就不能在一次称量确定那个球有所不同)
  
  所以最终结果只能是:
  
  次数 总数 分组 规律
  1 3 1 1 1 3
  2 9 3 3 3 3×3
  3 27 9 9 9 3×3×3
  4 81 27 27 27 3×3×3×3
  5 243 81 81 81 3×3×3×3×3
  .................
  n 3×3...×3(n个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n个3)
  
  12介于总数9和27之间,故至少3次
  所以100介于总数81和243之间,故至少5次,否则只是幸运

 作者:effizy   回复日期:2006-11-15 20:46:0047#
  引用goodboy的:  
  分成36 36 28
  如果在36中一次后12 12 12  (第一次后分成左边的)
  二次后 4 4 4  (第二次后分成左边的)
  三次后 2 1 1  (第三次后分成左边的)
  四次  1 1  (第四次后才能分成1和1,此时不称如何知道哪个轻?)
  

 作者:variety   回复日期:2006-12-7 14:21:0048#
  作者:tensoft 回复日期:2005-12-12 15:03:00
  
    33 33 33 1 可以确定那堆里有轻的
    10 10 10 3
    3 3 3 1
    1 1 1
    
  
  
  我觉得这个是对的吧。

 作者:variety   回复日期:2006-12-7 14:48:0049#
  不过这个判定,总是假设第一组与第二组比较的时候,总是不平衡的.
  
  
  
  


 作者:rainmean   回复日期:2006-12-7 17:38:0050#
  至少应该五次嘛。。。

 作者:lysh520   回复日期:2006-12-8 15:24:0051#
  哎,要是人憨么杂办,或者说数学不行,是不是就表做程序了

 作者:doublelite   回复日期:2006-12-9 17:24:0052#
  oylq已经给出答案来了,考虑非常全面,不知怎么想出来的,我第一次就没想到

 作者:doublelite   回复日期:2006-12-9 17:30:0053#
  不好意思,看错了,竟然少算一次

 作者:babyface2007   回复日期:2006-12-12 10:45:0054#
  好贴,应该顶顶啊

 作者:luo197797   回复日期:2006-12-20 14:49:0055#
  你们有问题分为33,33,34就行了

 作者:Welming   回复日期:2006-12-20 21:11:0056#
  作者:ucmips 回复日期:2006-11-15 12:03:00
  
    作者:janny161 提交日期:2005-12-8 19:32:18
    
      有100个金币,其中有一个比较轻。给你一个天平,怎样用四次天平确认出哪个金币轻?
    ===================================
    此题至少五次
    
    因为一次称量只能分辨3组中的1组有不同(比如4个球,就不能在一次称量确定那个球有所不同)
    
    所以最终结果只能是:
    
    次数 总数 分组 规律
    1 3 1 1 1 3
    2 9 3 3 3 3×3
    3 27 9 9 9 3×3×3
    4 81 27 27 27 3×3×3×3
    5 243 81 81 81 3×3×3×3×3
    .................
    n 3×3...×3(n个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n个3)
    
    12介于总数9和27之间,故至少3次
    所以100介于总数81和243之间,故至少5次,否则只是幸运
  
  
   作者:effizy 回复日期:2006-11-15 20:46:00
  
    引用goodboy的:  
    分成36 36 28
    如果在36中一次后12 12 12  (第一次后分成左边的)
    二次后 4 4 4  (第二次后分成左边的)
    三次后 2 1 1  (第三次后分成左边的)
    四次  1 1  (第四次后才能分成1和1,此时不称如何知道哪个轻?)
    
  
  ======================================================================
  这个说的好像是有道理啊,四次不可能,要5次

 作者:Y666958570   回复日期:2006-12-21 16:34:0057#
  提供照片,定制“卡通真人雕像”
  提供照片,定制“FLASH电子相册”
  QQ 四50368279
  


 作者:babyboy321   回复日期:2006-12-29 13:58:0058#
  说5次的才是高手。

 作者:ljch_still   回复日期:2006-12-29 19:50:0059#
  我还没找出四次的方法,但是给出四次的算法的诸位其实都是五次,都是在最后一步或两步忽略了一种情况甚至直接就少计一步,都不知道你们是怎么想的,既然是逻辑题就思维严谨点,那么明显的遗漏还言之凿凿!

 作者:singleswordwang   回复日期:2008-3-18 19:53:0060#
  作者:janny161 提交日期:2005-12-8 19:32:18
    
      有100个金币,其中有一个比较轻。给你一个天平,怎样用四次天平确认出哪个金币轻?
    ===================================
    此题至少五次
    
    因为一次称量只能分辨3组中的1组有不同(比如4个球,就不能在一次称量确定那个球有所不同)
    
    所以最终结果只能是:
    
    次数 分组 总数 规律
    1 1 1 1 3 3
    2 3 3 3 9 3×3
    3 9 9 9 27 3×3×3
    4 27 27 27 81 3×3×3×3
    5 81 81 81 243 3×3×3×3×3
    .................
    n 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n个3) 3×3...×3(n个3)
    
    12介于总数9和27之间,故至少3次
    所以100介于总数81和243之间,故至少5次,否则只是幸运
  
  ------------------------------------------------------------------------------------------------------------------------
  我很欣赏这位仁兄的思维方式,能够运用归纳总结这个高中数学里面的经典推理法,并最终给出规律性的结论,真的很棒!其他正确的答案只能说明这个人的思维还算敏捷,仅此而已!我觉得这个问题可以发散开来思考,我先在这里顶下了:)

 作者:不求下进   回复日期:2008-3-19 11:55:0061#
  4次确实不行

 作者:天枫8547   回复日期:2008-3-19 17:25:0062#
  同意5次,顶!
  

 作者:武林人LMH   回复日期:2008-3-19 22:11:0063#
  人才 高手啊

 作者:jksharp   回复日期:2008-3-20 16:15:0064#
  不顶不行singleswordwang 太牛了,那些说4次的差点就骗了我

 作者:孝帝   回复日期:2008-3-21 15:51:0065#
  觉得考查的是不是有意给你个陷阱跳,4次不可以的。5次差不多的

 作者:wubirong   回复日期:2008-3-22 8:52:0066#
  四次怎么称,说四次的高手贴出来看下

 作者:wubirong   回复日期:2008-3-22 8:53:0067#
  2005年的贴子了汗

 作者:wabyb   回复日期:2008-3-22 11:39:0068#
  这个是微软的一个面试题的推广
  但是题目是这样的:
  12球一个和别的不一样重,请找出这个球称3次次
  但是我总结的是2的N次幂关系,并且就将结论发布给你微软
  但是实际上这个方法还是有点不对,在于没有计算他的相互偶联的关系后来修正为
  2指数的关系,自此通过
  不知这位兄台能否借鉴
  

 作者:sefule   回复日期:2008-3-22 18:44:0069#
  一次分辨最多3枚
  二次分辨最多9枚
  三次分辨最多27枚
  四次分辨最多81枚
  五次分辨最多243枚
  个人意见,仅作参考!

 作者:star1202   回复日期:2008-4-6 20:52:0070#
  同意5次 上面说四次的方法在最坏的情况下都是5次

 作者:raomeng   回复日期:2008-4-6 22:25:0071#
  第一次:在100个中随便拿 27 27 若重量不同,则一定能完成,过程略;若重量相同,则接着往下看。
  第二次:在剩下的46个中随便拿 9 9 若重量不同,则一定能完成,过程略;若重量相同,则接着往下看。
  第三次:在剩下的28个中随便拿 3 3 若重量不同,则一定能完成,过程略;若重量相同,则接着往下看。
  第四次:在剩下的22个中随便拿 1 1 若重量不同,则直接完成;若重量相同,则失败。
  
  综上所述,能完成的机率为80%。

 作者:oo5209901   回复日期:2008-4-11 18:27:0072#
  好贴。顶下。

 作者:dream396656066   回复日期:2008-4-11 22:45:0073#
  33/33/33/1的分法,好像要五次吧,
  

 作者:dream396656066   回复日期:2008-4-11 22:50:0074#
  简单的三分法,
  

 作者:tlm0910   回复日期:2008-4-13 23:32:0075#
  一定三分,四分骗人的

 作者:tlm0910   回复日期:2008-4-13 23:35:0076#
  作者: sefule 回复日期:2008-3-22 18:44:00
  
    一次分辨最多3枚
    二次分辨最多9枚
    三次分辨最多27枚
    四次分辨最多81枚
    五次分辨最多243枚
    个人意见,仅作参考!
  
  这个正解,倒推法

 作者:tlm0910   回复日期:2008-4-13 23:37:0077#
  次数 分组 总数 规律
      1 1 1 1 3 3
      2 3 3 3 9 3×3
      3 9 9 9 27 3×3×3
      4 27 27 27 81 3×3×3×3
      5 81 81 81 243 3×3×3×3×3
      .................
      n 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n个3) 3×3...×3(n个3)
      
      12介于总数9和27之间,故至少3次
      所以100介于总数81和243之间,故至少5次,否则只是幸运
  
  
  不错,数学基础好

 作者:tlm0910   回复日期:2008-4-13 23:38:0078#
  倒推,太容易理解了

 作者:andsoncell   回复日期:2008-4-13 23:55:0079#
  我还以为是只称4次呢。。。原来是用4次天平啊。。。真是的。。。

 作者:Kevin8156   回复日期:2008-4-16 15:42:0080#
  思维啊,弟兄们,打破那种数学的惯性,生活的惯性才是这类智力题的目的所在。上面33 33 33 1的基本正确的嘛~~最后剩两个而天平次数已经用到4次了,就分别用手掂量一下,大概就分出来了,哈哈,抛砖引玉啊~~~~

 作者:harric   回复日期:2008-4-17 15:30:0081#
  顶哈!

 作者:MoMo_Vip   回复日期:2008-4-21 23:32:0082#
  至少五次,以上说四次能解出来的都有错误!
  个人分析之后认为:四次能解出来只能说是幸运。
  所以LZ,考官的面试题有错误

 作者:vgoo   回复日期:2008-4-23 1:30:0083#
  这样的题目有意思
  作者: ucmips 回复日期:2006-11-15 11:58:00
  
    作者:janny161 提交日期:2005-12-8 19:32:18
    
      有100个金币,其中有一个比较轻。给你一个天平,怎样用四次天平确认出哪个金币轻?
    ===================================
    此题至少五次
    
    因为一次称量只能分辨3组中的1组有不同(比如4个球,就不能在一次称量确定那个球有所不同)
    
    所以最终结果只能是:
    
    次数 分组 总数 规律
    1 1 1 1 3 3
    2 3 3 3 9 3×3
    3 9 9 9 27 3×3×3
    4 27 27 27 81 3×3×3×3
    5 81 81 81 243 3×3×3×3×3
    .................
    n 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n-1个3) 3×3...×3(n个3) 3×3...×3(n个3)
    
    12介于总数9和27之间,故至少3次
    所以100介于总数81和243之间,故至少5次,否则只是幸运
  ----------------------------
  这个最牛,赞一个
共1页  第
 

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值