The Olympic Games in Bercouver are in full swing now. Here everyone has their own objectives: sportsmen compete for medals, and sport commentators compete for more convenient positions to give a running commentary. Today the main sport events take place at three round stadiums, and the commentator’s objective is to choose the best point of observation, that is to say the point from where all the three stadiums can be observed. As all the sport competitions are of the same importance, the stadiums should be observed at the same angle. If the number of points meeting the conditions is more than one, the point with the maximum angle of observation is prefered.
Would you, please, help the famous Berland commentator G. Berniev to find the best point of observation. It should be noted, that the stadiums do not hide each other, the commentator can easily see one stadium through the other.
Input
The input data consists of three lines, each of them describes the position of one stadium. The lines have the format x, y, r, where (x, y) are the coordinates of the stadium’s center ( - 103 ≤ x, y ≤ 103), and r (1 ≤ r ≤ 103) is its radius. All the numbers in the input data are integer, stadiums do not have common points, and their centers are not on the same line.
Output
Print the coordinates of the required point with five digits after the decimal point. If there is no answer meeting the conditions, the program shouldn’t print anything. The output data should be left blank.
Examples
input
0 0 10
60 0 10
30 30 10
output
30.00000 0.00000
思路: 若选取最佳视角点,最佳视角点到每个圆心的距离与相应圆的半径之比应相等。采用查找法,以三个圆心的中心为起始点进行查找,三个圆的圆心中心组成三角形时,中心与到三个圆的圆心形成的角度最大,从角度最大值开始寻找。
// codeforce.cpp : 定义控制台应用程序的入口点。
//
//#include "stdafx.h"
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
struct stadium {
int x, y, r;
}stadium[3];
int dx[] = { -1,0,0,1 };
int dy[] = { 0,1,-1,0 };
const double eps = 1e-6;
double stadium_tmp[3];
double cost(double x, double y) {
for (int i = 0; i < 3; ++i) {
stadium_tmp[i] = sqrt(pow(x - stadium[i].x, 2) + pow(y - stadium[i].y, 2));
stadium_tmp[i] /= stadium[i].r;
//stadium_tmp[i] = stadium[i].r /stadium_tmp[i]; 此处有陷阱,应注意。
}
double ct = 0.0;
for (int i = 0; i < 3; ++i) {
ct += pow(stadium_tmp[i] - stadium_tmp[(i + 1) % 3],2);
}
return ct;
}
int main(){
double x=0.0, y=0.0;
for (int i = 0; i < 3; ++i) {
scanf("%d%d%d",&stadium[i].x,&stadium[i].y,&stadium[i].r);
x += stadium[i].x;
y += stadium[i].y;
}
x /= 3.0;
y /= 3.0;
double step = 1.0;
double error = cost(x, y);
double res_x = -1, res_y = -1;
while (step > eps) {
int min_error_index = -1;
for (int i = 0; i < 4; ++i) {
double temp_x=0.0, temp_y=0.0;
temp_x = x + dx[i] * step;
temp_y = y + dy[i] * step;
double temp_error = cost(temp_x, temp_y);
if (temp_error < error) {
error = temp_error;
min_error_index = i;
res_x = temp_x;
res_y = temp_y;
}
}
if (min_error_index==-1)
step /= 2;
else {
x = x + dx[min_error_index] * step;
y = y +dy[min_error_index] * step;
}
}
if (error < eps)
printf("%.5lf %.5lf\n",res_x,res_y);
return 0;
}