GAN
Michael F
这个作者很懒,什么都没留下…
展开
-
Gumbel-Softmax trick
Gumbel-Softmax 是一种可导采样技巧,它可以用来对离散分布进行重参数采样。与softmax区别是,gumbel-softmax得到得是样本(即采样,对于神经网络,离散输入常转化为one-hot形式,采样出来的样本是经soft后one-hot向量[x1,x2,...,xn][x_1,x_2,...,x_n][x1,x2,...,xn]),而softmax得到是样本得均值(即各分类概率,[p1,p2,...,pn][p_1,p_2,...,p_n][p1,p2,...,pn])。假设每原创 2020-10-23 20:06:59 · 1912 阅读 · 0 评论 -
GAN性能评测:Inception Score
最近在了解GAN的评测方法,读了一篇关于Inception Score方法的论文,"A Note on the Inception Score. Shane Barratt , Rishi Sharma."。在此做个总结。Inception Score是基于一个预训练好的Inception V3网络通过统计该网络的输出来计算生成网络的性能,其计算公式如下:$$IS(G) = exp(E_{x...原创 2020-03-27 10:49:54 · 2621 阅读 · 0 评论 -
GAN的理论部分
GAN的优化目标函数为argminG maxDV(G,D) \arg{\underset {G} {\mathop{ \min}}}\ {\underset {D} {\max}} V(G,D) argGmin DmaxV(G,D)其中按原始GAN定义的损失函数 Discriminator 的目标函数为argmaxDEx∼data[logD(x)]+E...原创 2020-01-05 17:33:08 · 262 阅读 · 0 评论 -
生成模型的理论部分
GAN(Generitive Adversarial Network)为对抗生成网络的缩写,近来对其做了些研究,在此记录一下这段时间的学习成果,算是打个卡存个档(哈)!。 这篇文章先介绍一下其数学原理,主要来源于李宏毅老师的视频。图像的生成有几种方法如autodecoder、GAN和flow等。他们的原理可以用如下的数学表达式来表示。假设你有一堆真实图片(这堆...原创 2020-01-05 16:29:46 · 289 阅读 · 0 评论