MEMS与神经形态电子系统中的储层计算
一、MEMS中的储层计算
MEMS(微机电系统)设备是当今众多传感器技术的基础,在人工智能和机器学习相关新技术的发展中有望发挥重要作用。在自主系统(如自动驾驶汽车)或分布式传感器系统(如物联网)产生“大数据”的背景下,MEMS展现出了独特的优势。
-
MEMS用于神经形态计算的优势
- 小型化 :MEMS设备体积小,能够在有限的空间内实现复杂的功能。
- 节能 :能耗低,适合长时间运行和对能源敏感的应用场景。
- 高速运行 :可以快速处理数据,满足实时性要求较高的任务。
-
实验结果
实验表明,在MEMS中可以高效且稳健地实现储层计算。当MEMS作为“纯”计算设备(具有模拟电输入和模拟电输出)时,其实现的人工智能功能性能可能超过传统电子设备。 -
集成传感与计算功能
MEMS设备的一个重要特点是能够在同一设备中实现神经形态计算和传感功能。这一创新理念可以通过集成显著减小系统尺寸并降低能耗。传统的机电系统通常将离散传感器与单独的信号处理电子设备耦合,而现在可以设想构建一种可训练的传感器,利用其传感机制的非线性特性对测量数据进行计算处理。类似的想法也可能适用于光学传感器和储层计算系统。