Attack on Titans_dp递推


Over centuries ago, mankind faced a new enemy, the Titans. The difference of power between mankind and their newfound enemy was overwhelming. Soon, mankind was driven to the brink of extinction. Luckily, the surviving humans managed to build three walls: Wall Maria, Wall Rose and Wall Sina. Owing to the protection of the walls, they lived in peace for more than one hundred years.

But not for long, a colossal Titan appeared out of nowhere. Instantly, the walls were shattered, along with the illusory peace of everyday life. Wall Maria was abandoned and human activity was pushed back to Wall Rose. Then mankind began to realize, hiding behind the walls equaled to death and they should manage an attack on the Titans.

So, Captain Levi, the strongest ever human being, was ordered to set up a special operation squad of N people, numbered from 1 to N. Each number should be assigned to a soldier. There are three corps that the soldiers come from: the Garrison, the Recon Corp and the Military Police. While members of the Garrison are stationed at the walls and defend the cities, the Recon Corps put their lives on the line and fight the Titans in their own territory. And Military Police serve the King by controlling the crowds and protecting order. In order to make the team more powerful, Levi will take advantage of the differences between the corps and some conditions must be met.

The Garrisons are good at team work, so Levi wants there to be at least M Garrison members assigned with continuous numbers. On the other hand, members of the Recon Corp are all elite forces of mankind. There should be no more than K Recon Corp members assigned with continuous numbers, which is redundant. Assume there is unlimited amount of members in each corp, Levi wants to know how many ways there are to arrange the special operation squad.


There are multiple test cases. For each case, there is a line containing 3 integers N (0 < N < 1000000), M (0 < M < 10000) and K (0 < K < 10000), separated by spaces.


One line for each case, you should output the number of ways mod 1000000007.

Sample Input
3 2 2
Sample Output

Denote the Garrison, the Recon Corp and the Military Police as G, R and P. Reasonable arrangements are: GGG, GGR, GGP, RGG, PGG.


using namespace std;

const int N=1e6+10;

#define ll long long
#define rep(i,n) for(int i=1;i<=n;i++)
#define red(i,n) for(int i=n;i>=1;i--)
const int mod=1e9+7;
ll dp[N][3];//G,R,P

int n,m,k;

int cal(int g,int r){
    for(int i=1;i<=n;i++){
        ll sum=(dp[i-1][0]+dp[i-1][1]+dp[i-1][2])%mod;
        else dp[i][0]=(sum-dp[i-g-1][2]-dp[i-g-1][1]+2*mod)%mod;
        else dp[i][1]=(sum-dp[i-r-1][2]-dp[i-r-1][0]+2*mod)%mod;
    return (dp[n][0]+dp[n][1]+dp[n][2])%mod;

int main(){



Today is the 10th Annual of “September 11 attacks”, the Al Qaeda is about to attack American again. However, American is protected by a high wall this time, which can be treating as a segment with length N. Al Qaeda has a super weapon, every second it can attack a continuous range of the wall. American deployed N energy shield. Each one defends one unit length of the wall. However, after the shield defends one attack, it needs t seconds to cool down. If the shield defends an attack at kth second, it can’t defend any attack between (k+1)th second and (k+t-1)th second, inclusive. The shield will defend automatically when it is under attack if it is ready.nnDuring the war, it is very important to understand the situation of both self and the enemy. So the commanders of American want to know how much time some part of the wall is successfully attacked. Successfully attacked means that the attack is not defended by the shield. n nInputThe beginning of the data is an integer T (T ≤ 20), the number of test case.nThe first line of each test case is three integers, N, Q, t, the length of the wall, the number of attacks and queries, and the time each shield needs to cool down.nThe next Q lines each describe one attack or one query. It may be one of the following formatsn1. Attack si tin Al Qaeda attack the wall from si to ti, inclusive. 1 ≤ si ≤ ti ≤ Nn2. Query pn How many times the pth unit have been successfully attacked. 1 ≤ p ≤ NnThe kth attack happened at the kth second. Queries don’t take time.n1 ≤ N, Q ≤ 20000n1 ≤ t ≤ 50 n nOutputFor the ith case, output one line “Case i: ” at first. Then for each query, output one line containing one integer, the number of time the pth unit was successfully attacked when asked. n nSample Input2 3 7 2 Attack 1 2 Query 2 Attack 2 3 Query 2 Attack 1 3 Query 1 Query 3 9 7 3 Attack 5 5 Attack 4 6 Attack 3 7 Attack 2 8 Attack 1 9 Query 5 Query 3 n nSample OutputCase 1: 0 1 0 1 Case 2: 3 2


  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他