Number String_计数dp

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ujn20161222/article/details/79977149
The signature of a permutation is a string that is computed as follows: for each pair of consecutive elements of the permutation, write down the letter 'I' (increasing) if the second element is greater than the first one, otherwise write down the letter 'D' (decreasing). For example, the signature of the permutation {3,1,2,7,4,6,5} is "DIIDID".

Your task is as follows: You are given a string describing the signature of many possible permutations, find out how many permutations satisfy this signature.

Note: For any positive integer n, a permutation of n elements is a sequence of length n that contains each of the integers 1 through n exactly once.

Input Each test case consists of a string of 1 to 1000 characters long, containing only the letters 'I', 'D' or '?', representing a permutation signature.

Each test case occupies exactly one single line, without leading or trailing spaces.

Proceed to the end of file. The '?' in these strings can be either 'I' or 'D'.
Output For each test case, print the number of permutations satisfying the signature on a single line. In case the result is too large, print the remainder modulo 1000000007.
Sample Input
II
ID
DI
DD
?D
??
Sample Output
1
2
2
1
3
6

        
  
Hint
Permutation {1,2,3} has signature "II".
Permutations {1,3,2} and {2,3,1} have signature "ID".
Permutations {3,1,2} and {2,1,3} have signature "DI".
Permutation {3,2,1} has signature "DD".
"?D" can be either "ID" or "DD".
"??" gives all possible permutations of length 3.

        
 
#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int mod=1e9+7;
const int N=1000+5;

char s[N];
ll sum[N][N];

int main(){
  // freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while(scanf("%s",s)!=EOF){
        int len=strlen(s);
        sum[0][1]=1;
        for(int i=1;i<=len;i++)
        for(int j=1;j<=i+1;j++){
            sum[i][j]=sum[i][j-1];
            if(s[i-1]!='D')
                sum[i][j]+=sum[i-1][j-1];
            if(s[i-1]!='I')
                sum[i][j]+=sum[i-1][i]-sum[i-1][j-1]+mod;
            sum[i][j]%=mod;
        }
        printf("%lld\n",sum[len][len+1]);
    }
    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页