目标函数
其中,上式第一项称为误差函数,常见的误差函数有平方误差,logistic误差等等,第二项称为正则项,常见的有L1正则和L2正则,表示树的复杂度的函数,越小复杂度越低,泛化能力越强。
基学习器
分类树和回归树(CART)
树集成
模型学习
每一次保留原来的模型不变,加入一个新的函数f到我们的模型中。
f 的选择标准—最小化目标函数!
通过二阶泰勒展开等,我们得到了最终的目标函数:
G、H:与数据点在误差函数上的一阶、二阶导数有关,T:叶子的个数
切分点查找算法
上图中G都是各自区域内的gi总和,根据Gain(max)选择最优分割点。
缺点
- 在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。
- 预排序方法(pre-sorted):
-
首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如排序后的索引,为了后续快速的计算分割点),这里需要消耗训练数据两倍的内存。
-
其次,时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。
-
最后,对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。
参考:
https://blog.csdn.net/github_38414650/article/details/76061893