随着计算机视觉技术的不断发展,图像去雾成为了一个备受关注的研究方向。而在图像去雾领域中,暗通道先验算法是一种经典且有效的方法。本文将介绍暗通道先验的原理及其在计算机视觉中的应用,并提供相应的源代码。
一、暗通道先验的原理
暗通道先验算法是由于 He et al. 在他们的论文《Single Image Haze Removal Using Dark Channel Prior》中提出的。该算法基于一个观察结果:在大多数自然图像中,至少存在一个颜色通道,其像素值在至少一个局部窗口内非常接近于零。这个被称为"暗通道"的通道可以用来估计图像中的全局大气光。
具体来说,给定一幅输入图像I,可以通过以下步骤获取图像的暗通道:
-
对于图像的每个像素点x,计算以x为中心的局部窗口内最小值,即:
min(r, g, b) = min(I_r(x), I_g(x), I_b(x)) -
构建图像的暗通道J(x),即对于每个像素点x,取以x为中心的局部窗口内最小值的最大值,即:
J(x) = max(min(r, g, b)) -
对J进行滤波,以减少噪声的影响。
通过估计图像的暗通道,可以获得图像中的全局大气光A。然后,可以使用以下公式对输入图像进行去雾处理:
J(