暗通道先验的图像去雾算法及其在计算机视觉中的应用

100 篇文章 26 订阅 ¥59.90 ¥99.00
本文介绍了暗通道先验算法在图像去雾中的应用,包括原理、去雾处理公式和在目标检测、3D重建中的作用。通过Python代码示例展示了如何实现图像去雾。
摘要由CSDN通过智能技术生成

随着计算机视觉技术的不断发展,图像去雾成为了一个备受关注的研究方向。而在图像去雾领域中,暗通道先验算法是一种经典且有效的方法。本文将介绍暗通道先验的原理及其在计算机视觉中的应用,并提供相应的源代码。

一、暗通道先验的原理

暗通道先验算法是由于 He et al. 在他们的论文《Single Image Haze Removal Using Dark Channel Prior》中提出的。该算法基于一个观察结果:在大多数自然图像中,至少存在一个颜色通道,其像素值在至少一个局部窗口内非常接近于零。这个被称为"暗通道"的通道可以用来估计图像中的全局大气光。

具体来说,给定一幅输入图像I,可以通过以下步骤获取图像的暗通道:

  1. 对于图像的每个像素点x,计算以x为中心的局部窗口内最小值,即:
    min(r, g, b) = min(I_r(x), I_g(x), I_b(x))

  2. 构建图像的暗通道J(x),即对于每个像素点x,取以x为中心的局部窗口内最小值的最大值,即:
    J(x) = max(min(r, g, b))

  3. 对J进行滤波,以减少噪声的影响。

通过估计图像的暗通道,可以获得图像中的全局大气光A。然后,可以使用以下公式对输入图像进行去雾处理:

J(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值