计及风光不确定性的基于IGDT信息间隙决策的综合能源系统优化调度

标题:计及风光不确定性的基于IGDT信息间隙决策的综合能源系统优化调度

摘要:

近年来,随着人们对能源问题的重视,综合能源系统的优化调度问题日益受到关注。针对这一问题,本文构建了一个包含光热电站、储气、储碳、碳捕集装置的综合能源系统优化调度模型,并考虑P2G装置与碳捕集装置联合运行,从而实现碳经济的最大化。此外,本文还考虑了综合能源风光出力的不确定性,构建了一个基于信息间隙决策的综合能源系统优化调度模型,通过分析IGDT鲁棒模型以及机会模型,且不确定参数可以自行调节,从而进行灵敏度分析。

介绍:

随着人类对能源的需求不断增加,传统的能源供应方式已经无法满足人们的需求。而综合能源系统作为一种新型的能源供应方式,具有节能减排、可持续发展等优势,在实际应用中受到了广泛的关注。

为了更好地解决综合能源系统的优化调度问题,本文构建了一个包含光热电站、储气、储碳、碳捕集装置的综合能源系统优化调度模型。此外,本文还考虑了综合能源风光出力的不确定性,构建了一个基于信息间隙决策的综合能源系统优化调度模型,通过分析IGDT鲁棒模型以及机会模型,且不确定参数可以自行调节,从而进行灵敏度分析。

方法:

在本文中我们的主要目标是实现综合能源系统的优化调度,为此,我们构建了一个包含光热电站、储气、储碳、碳捕集装置的综合能源系统优化调度模型,并考虑P2G装置与碳捕集装置联合运行,从而实现碳经济的最大化。

此外,本文也考虑了综合能源风光出力的不确定性问题,我们构建了一个基于信息间隙决策的综合能源系统优化调度模型。该模型采用IGDT鲁棒模型以及机会模型,通过调节不确定参数,进行灵敏度分析,从而找到更优的方案。

结果与讨论:

通过对模型进行仿真实验,我们得到了如下的结果:在满足综合能源系统的供需平衡的前提下,我们可以通过调节不同的参数,实现碳经济的最大化。同时,我们还发现,在考虑综合能源风光出力的不确定性问题时,基于信息间隙决策的模型可以更好地解决这一问题。

结论:

本文构建了一个包含光热电站、储气、储碳、碳捕集装置的综合能源系统优化调度模型,并考虑P2G装置与碳捕集装置联合运行,从而实现碳经济的最大化。同时,基于信息间隙决策的模型也能够更好地处理综合能源风光出力的不确定性问题。在实际应用中,本文提出的方法可以为综合能源系统的优化调度提供有力支持。

原创文章,转载请说明出处
文章涉及到的程序或代码下载地址:http://imgcs.cn/lanzou/691648188334.html

### 关于考虑风能和太阳能不确定性的CCS-P2G耦合运行的虚拟电厂优化调度 在研究涉及碳捕获与封存(CCS)技术结合电力转气体(P2G)系统的虚拟电厂(VPP)优化调度方案时,不确定性因素如风力发电量和太阳辐射强度的变化成为关键挑战之一。为了应对这些不可预测性带来的影响,学者们提出了多种模型和技术来提高VPP运营效率并减少环境足迹。 一种有效的策略是在规划阶段引入随机性和鲁棒性分析方法,通过构建多场景模拟框架评估不同天气条件下的能源产出情况[^1]。这种方法允许决策者提前准备多个可能的情景组合,在实际操作过程中依据实时数据调整划以适应变化中的资源可用性。此外,利用机器学习算法可以进一步增强预测精度,从而更好地管理风险并实现经济效益最大化。 对于具体的实施方案而言,采用混合整数线性规划(MILP)或其他高级数学建模工具能够帮助解决复杂的约束条件下最优解的选择问题。这类模型通常会综合考量成本最小化目标函数以及满足电网稳定性要求等方面的内容。值得注意的是,随着可再生能源比例不断增加,如何平衡间歇电源输入波动成为了亟待解决的重要课题;而集成储能装置则提供了一种可行路径——它不仅有助于平滑功率曲线,还能参与辅助服务市场获取额外收益。 ```python import numpy as np from scipy.optimize import linprog def optimize_vpp_scheduling(wind_forecast, solar_forecast, demand_profile): """ Optimize VPP scheduling considering wind and solar uncertainties. Parameters: wind_forecast (list): Forecasted hourly wind generation values over the planning horizon. solar_forecast (list): Forecasted hourly solar generation values over the planning horizon. demand_profile (list): Hourly electricity demand profile over the planning horizon. Returns: dict: Optimized schedule including power dispatch from various sources. """ c = [-1]*len(demand_profile) # Objective coefficients representing cost minimization A_ub = [] # Inequality constraint matrix b_ub = [] # Upper bounds of inequality constraints for t in range(len(demand_profile)): row = [0]*len(demand_profile) # Add contribution to total supply at time step 't' row[t] = 1 # Ensure that sum of all supplies meets or exceeds demand at each hour A_ub.append(row) b_ub.append(-demand_profile[t]) res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, method='highs') optimized_schedule = {'wind': [], 'solar': [], 'storage': [], 'grid_import': list(res.x)} return optimized_schedule ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值