Problem Description
XX星球有很多城市,每个城市之间有一条或多条飞行通道,但是并不是所有的路都是很安全的,每一条路有一个安全系数s,s是在 0 和 1 间的实数(包括0,1),一条从u 到 v 的通道P 的安全度为Safe(P) = s(e1)*s(e2)…*s(ek) e1,e2,ek是P 上的边 ,现在8600 想出去旅游,面对这这么多的路,他想找一条最安全的路。但是8600 的数学不好,想请你帮忙 ^_^
Input
Output
如果86无法达到他的目的地,输出"What a pity!",
其他的输出这两个城市之间的最安全道路的安全系数,保留三位小数。
其他的输出这两个城市之间的最安全道路的安全系数,保留三位小数。
Sample Input
3 1 0.5 0.5 0.5 1 0.4 0.5 0.4 1 3 1 2 2 3 1 3
Sample Output
0.500 0.400 0.500
Author
ailyanlu
Source
HDU 2007-Spring Programming Contest - Warm Up (1)
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1010;
int n;
double s[maxn][maxn];
double d[maxn];
int start, en;
struct node
{
int num;
double safety;
};
bool operator < ( node a, node b )
{
return a.safety < b.safety;
}
priority_queue<node>que;
void dijkstra ( int a ) //求最长路
{
for ( int i = 0; i < n; i++ )
d[i] = 0;
d[a] = 1;
node t;
t.num = a, t.safety = d[a];
que.push ( t );
while ( !que.empty() )
{
node N = que.top();
que.pop();
for ( int i = 0; i < n; i++ )
{
if ( d[i] < d[N.num]*s[N.num][i] )
{
d[i] = d[N.num] * s[N.num][i];
node tt;
tt.num = i, tt.safety = d[i];
que.push ( tt );
}
}
}
if ( d[en - 1] == 0 )
printf ( "What a pity!\n" );
else
printf ( "%.3f\n", d[en - 1] );
}
int main()
{
while ( ~scanf ( "%d", &n ) )
{
for ( int i = 0; i < n; i++ )
for ( int j = 0; j < n; j++ )
scanf ( "%lf", &s[i][j] );
int q;
scanf ( "%d", &q );
while ( q-- )
{
scanf ( "%d%d", &start, &en );
dijkstra ( start - 1 );
}
}
return 0;
}