- 博客(51)
- 资源 (3)
- 收藏
- 关注
原创 Pose2Seg: Detection Free Human Instance Segmentation 论文阅读笔记
Pose2Seg:无检测人体实例分割摘要:标准的图像实例分割方法是先执行目标检测,然后从检测的 bounding-box 中分割实例。最近,深度学习方法,如Mask R-CNN将二者联合执行。然而,很少有研究考虑 “人” 类别的唯一性,人可以通过姿态骨架被定义。此外,人体姿态骨架比bounding box 更能区分具有严重遮挡的实例。 本文提出了一种全新的基于姿态的人体实例分割框架(代码地址:https://github.com/liruilong940607/Pose2Seg),它基于人体姿态而非pro
2022-05-24 22:07:45
1593
原创 Deep Learning-Based Human Pose Estimation: A Survey 论文笔记
人体姿态估计的目的是定位人体部位,并从图像和视频等输入数据中建立人体表示(如人体骨架)。近十年,人体姿态估计越来越受关注,并被广泛应用于人机交互、运动分析、增强现实和虚拟现实等领域。尽管基于深度学习的解决方案在人体姿态估计方面取得了很高的性能,但由于 ==训练数据不足、深度模糊和遮挡== 使人体姿态估计仍存在挑战。本文通过系统性分析和比较姿态估计方案的输入数据和推理过程,全面回顾基于深度学习的 2D 和 3D 姿态估计解决方案。本次调查涵盖2014年以来的240多篇研究论文。此外,本文还包括 2D 和 3D
2022-05-23 16:35:04
1401
1
原创 MySQL 示例数据库 employees 的导入与使用
导入 MySQL 示例数据库 employees本博客记录将 employees.db 数据库导入本地 MySQL 数据库中。文章目录导入 MySQL 示例数据库 employees1. 导入示例数据库:employees1.1 下载示例数据库:employees1.2 导入 employees2. 使用示例数据库:employees1. 导入示例数据库:employees1.1 下载示例数据库:employeesemployees 是官方提供的示例数据库,官方下载链接或者在该链接下下载:
2022-05-15 08:52:00
6127
原创 MySQL Workbench 安装及使用
MySQL Workbench 安装及使用文章目录MySQL Workbench 安装及使用1. MySQL Workbench 简介2. MySQL Workbench 的下载与安装3. MySQL Workbench 使用3.1 Workbench 创建数据库3.2 概念设计:绘制 E-R 图3.3 逻辑结构设计:E-R 图转换为关系模式3.3.1 建立关系模式3.3.2 关系模式规范化处理3.4 逻辑结构设计:Workbench 建表1. MySQL Workbench 简介MySQ
2022-05-11 20:22:11
146088
15
原创 Deep High-Resolution Representation Learning for Visual Recognition阅读笔记
用于视觉识别的深度高分辨率表征学习论文链接摘要: 高分辨率表示对于人体姿态估计、语义分割和目标检测这类位置敏感的视觉问题至关重要。现有的 sota 框架首先通过一个 high-to-low 分辨率卷积串联(例如ResNet、VGGNet)形成的子网将输入图像编码为低分辨率表示,然后从编码的低分辨率表示中恢复高分辨率表示。但是,HRNet在整个过程中保持高分辨率表示。HRNet 有两个关键特征:(i) 并行连接 high-to-low 分辨率卷积流;(ii) 在不同分辨率之间反复交换信息。这样能够使 H
2022-05-08 16:28:07
2872
原创 HRNet 论文阅读笔记
Deep High-Resolution Representation Learning for Human Pose Estimation 用于人体姿态估计的深度高分辨率表征学习论文地址摘要: 本文关注针对人体姿态估计问题,重点学习可靠的高分辨率表示。现有的大多方法从一个 high-to-low 分辨率网络生成的低分辨率表示中恢复高分辨率表示。但是,我们的网络模型在整个过程中都保持高分辨率表示。我们从一个高分辨率的子网络作为 first stage 开始,逐步添加 high-to-low 分辨率子网
2022-05-06 22:09:38
1899
原创 Lite-HRNet: A Lightweight High-Resolution Network 阅读笔记
Lite-HRNet: A Lightweight High-Resolution Network 论文阅读笔记摘要: 本文提出了一个应用于人体姿态估计的非常有效的轻量级高分辨率网络:Lite-HRNet。我们首先简单地将ShuffleNet中高效的 shuffle block 应用于HRNet,相比流行的轻量级网络(如MobileNet、ShuffleNet和小型HRNet)能产生更强的性能。shuffle blocks 中大量使用的 pointwise(1×1)卷积是计算瓶颈。我们引入了一个轻量级单
2022-05-02 15:52:19
3579
原创 Pytorch个人学习笔记
Pytorch 个人学习笔记参考哔哩哔哩的up主:我是土堆,视频链接提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Pytorch 个人学习笔记1. Pytorch 环境配置1.1 安装 anaconda1.1.1 管理conda1.1.2 管理环境1.2 安装 pytorch1.4 配置显卡1.3 配置虚拟环境(pytorch、tensorflow...)一、pandas是什么?二、使用步骤1.引入库2.读入数据总结1. Pytorch 环境配置1.1 安装 anac
2022-04-30 17:06:00
1825
原创 Accelerating DETR Convergence via Semantic-Aligned Matching 笔记
Accelerating DETR Convergence via Semantic-Aligned Matching 论文学习笔记论文链接:https://arxiv.org/abs/2203.06883语义对齐就是在描绘同一类别对象的两幅图像中,建立稠密的语义对应关系。语义在语音识别中指的是语音的意思,在图像领域,语义指的是图像的内容,对图片意思的理解摘要: DETR (DEtection TRansformer) 通过消除手工组件例如anchor建立了一种新的目标检测框架。然而,DETR的收敛
2022-04-25 21:10:36
4503
2
原创 ChannelNets 论文学习笔记
ChannelNets 论文笔记摘要: 卷积神经网络(CNN)在解决各种人工智能任务方面表现出了巨大的能力。然而,不断增长的模型尺寸时它们难以在资源有限的应用中使用。这篇论文提出使用 channel-wise convolutions 来压缩深度模型,在CNN中用稀疏连接替换特征图之间的密集连接,基于此操作,该研究构建了轻量级的CNNs:ChannelNets。ChannelNets使用3个channel-wise 卷积的实例,分别是: group channel-wise convolutions;de
2022-04-24 20:06:31
3457
原创 个人部署HRNet随记
1. 源码链接:GitHub - HRNet/HRNet-Human-Pose-Estimation: This repo is copied from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch2. 运行环境:Ubuntu 16.04.6 + pytorch 1.8.0 + NVIDIA GeForce3. 安装requirements.txt文件中需要的包:(这里我把很多"=="的版本换成了">=").
2022-04-23 19:04:59
2258
4
存储管理实验
2017-07-12
旅店POS机管理系统
2017-06-26
作业调度实验
2017-07-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅