自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(51)
  • 资源 (3)
  • 收藏
  • 关注

原创 Pose2Seg: Detection Free Human Instance Segmentation 论文阅读笔记

Pose2Seg:无检测人体实例分割摘要:标准的图像实例分割方法是先执行目标检测,然后从检测的 bounding-box 中分割实例。最近,深度学习方法,如Mask R-CNN将二者联合执行。然而,很少有研究考虑 “人” 类别的唯一性,人可以通过姿态骨架被定义。此外,人体姿态骨架比bounding box 更能区分具有严重遮挡的实例。 本文提出了一种全新的基于姿态的人体实例分割框架(代码地址:https://github.com/liruilong940607/Pose2Seg),它基于人体姿态而非pro

2022-05-24 22:07:45 1593

原创 Deep Learning-Based Human Pose Estimation: A Survey 论文笔记

人体姿态估计的目的是定位人体部位,并从图像和视频等输入数据中建立人体表示(如人体骨架)。近十年,人体姿态估计越来越受关注,并被广泛应用于人机交互、运动分析、增强现实和虚拟现实等领域。尽管基于深度学习的解决方案在人体姿态估计方面取得了很高的性能,但由于 ==训练数据不足、深度模糊和遮挡== 使人体姿态估计仍存在挑战。本文通过系统性分析和比较姿态估计方案的输入数据和推理过程,全面回顾基于深度学习的 2D 和 3D 姿态估计解决方案。本次调查涵盖2014年以来的240多篇研究论文。此外,本文还包括 2D 和 3D

2022-05-23 16:35:04 1401 1

原创 MySQL 示例数据库 employees 的导入与使用

导入 MySQL 示例数据库 employees本博客记录将 employees.db 数据库导入本地 MySQL 数据库中。文章目录导入 MySQL 示例数据库 employees1. 导入示例数据库:employees1.1 下载示例数据库:employees1.2 导入 employees2. 使用示例数据库:employees1. 导入示例数据库:employees1.1 下载示例数据库:employeesemployees 是官方提供的示例数据库,官方下载链接或者在该链接下下载:

2022-05-15 08:52:00 6127

原创 MySQL Workbench 安装及使用

MySQL Workbench 安装及使用文章目录MySQL Workbench 安装及使用1. MySQL Workbench 简介2. MySQL Workbench 的下载与安装3. MySQL Workbench 使用3.1 Workbench 创建数据库3.2 概念设计:绘制 E-R 图3.3 逻辑结构设计:E-R 图转换为关系模式3.3.1 建立关系模式3.3.2 关系模式规范化处理3.4 逻辑结构设计:Workbench 建表1. MySQL Workbench 简介MySQ

2022-05-11 20:22:11 146088 15

原创 Deep High-Resolution Representation Learning for Visual Recognition阅读笔记

用于视觉识别的深度高分辨率表征学习论文链接摘要: 高分辨率表示对于人体姿态估计、语义分割和目标检测这类位置敏感的视觉问题至关重要。现有的 sota 框架首先通过一个 high-to-low 分辨率卷积串联(例如ResNet、VGGNet)形成的子网将输入图像编码为低分辨率表示,然后从编码的低分辨率表示中恢复高分辨率表示。但是,HRNet在整个过程中保持高分辨率表示。HRNet 有两个关键特征:(i) 并行连接 high-to-low 分辨率卷积流;(ii) 在不同分辨率之间反复交换信息。这样能够使 H

2022-05-08 16:28:07 2872

原创 HRNet 论文阅读笔记

Deep High-Resolution Representation Learning for Human Pose Estimation 用于人体姿态估计的深度高分辨率表征学习论文地址摘要: 本文关注针对人体姿态估计问题,重点学习可靠的高分辨率表示。现有的大多方法从一个 high-to-low 分辨率网络生成的低分辨率表示中恢复高分辨率表示。但是,我们的网络模型在整个过程中都保持高分辨率表示。我们从一个高分辨率的子网络作为 first stage 开始,逐步添加 high-to-low 分辨率子网

2022-05-06 22:09:38 1899

原创 Lite-HRNet: A Lightweight High-Resolution Network 阅读笔记

Lite-HRNet: A Lightweight High-Resolution Network 论文阅读笔记摘要: 本文提出了一个应用于人体姿态估计的非常有效的轻量级高分辨率网络:Lite-HRNet。我们首先简单地将ShuffleNet中高效的 shuffle block 应用于HRNet,相比流行的轻量级网络(如MobileNet、ShuffleNet和小型HRNet)能产生更强的性能。shuffle blocks 中大量使用的 pointwise(1×1)卷积是计算瓶颈。我们引入了一个轻量级单

2022-05-02 15:52:19 3579

原创 Pytorch个人学习笔记

Pytorch 个人学习笔记参考哔哩哔哩的up主:我是土堆,视频链接提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Pytorch 个人学习笔记1. Pytorch 环境配置1.1 安装 anaconda1.1.1 管理conda1.1.2 管理环境1.2 安装 pytorch1.4 配置显卡1.3 配置虚拟环境(pytorch、tensorflow...)一、pandas是什么?二、使用步骤1.引入库2.读入数据总结1. Pytorch 环境配置1.1 安装 anac

2022-04-30 17:06:00 1825

原创 Accelerating DETR Convergence via Semantic-Aligned Matching 笔记

Accelerating DETR Convergence via Semantic-Aligned Matching 论文学习笔记论文链接:https://arxiv.org/abs/2203.06883语义对齐就是在描绘同一类别对象的两幅图像中,建立稠密的语义对应关系。语义在语音识别中指的是语音的意思,在图像领域,语义指的是图像的内容,对图片意思的理解摘要: DETR (DEtection TRansformer) 通过消除手工组件例如anchor建立了一种新的目标检测框架。然而,DETR的收敛

2022-04-25 21:10:36 4503 2

原创 ChannelNets 论文学习笔记

ChannelNets 论文笔记摘要: 卷积神经网络(CNN)在解决各种人工智能任务方面表现出了巨大的能力。然而,不断增长的模型尺寸时它们难以在资源有限的应用中使用。这篇论文提出使用 channel-wise convolutions 来压缩深度模型,在CNN中用稀疏连接替换特征图之间的密集连接,基于此操作,该研究构建了轻量级的CNNs:ChannelNets。ChannelNets使用3个channel-wise 卷积的实例,分别是: group channel-wise convolutions;de

2022-04-24 20:06:31 3457

原创 个人部署HRNet随记

1. 源码链接:GitHub - HRNet/HRNet-Human-Pose-Estimation: This repo is copied from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch2. 运行环境:Ubuntu 16.04.6 + pytorch 1.8.0 + NVIDIA GeForce3. 安装requirements.txt文件中需要的包:(这里我把很多"=="的版本换成了">=").

2022-04-23 19:04:59 2258 4

存储管理实验

1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二 . 例题   设计一个请求页式存储管理方案。并编写模拟程序实现之。产生一个需要访问的指令地址流。它是一系列需要访问的指令的地址。为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列,使得 50%的指令是顺序执行的。25%的指令均匀地散布在前地址部分,25%的地址是均匀地散布在后地址部分。   为简单起见。页面淘汰算法采用 FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去。而不再判断它是否被改写过,也不将它写回到辅存。

2017-07-12

旅店POS机管理系统

旅店POS机管理系统: 1.前台管理:包括房间的查询、入住登记、旅客信息的查询、旅客费用的查询、退房结算等。 2.后台管理:包括客房间信息的录入、修改、删除等。 3.设计数据结构文件来实现数据库管理:包括数据录入、查询、删除、修改、更新。 本综合训练是计算机科学与技术、信息管理与信息系统、软件工程、电子商务专业重要的实践性环节之一,是在学生学习完《程序设计语言(C和C++)》、《数据结构》课程后进行的一次全面的综合练习。本课综合训练的目的和任务: 1. 巩固和加深学生对C和C++语言、数据结构课程的基本知识的理解和掌握 2. 掌握C和C++语言编程和程序调试的基本技能 3. 利用C和C++语言进行基本的软件设计 4. 掌握书写程序设计说明文档的能力 5. 提高运用C和C++语言、数据结构解决实际问题的能力

2017-06-26

作业调度实验

用高级语言编写和调试一个或多个作业调度的模拟程序,以加深对作业调度算法的理解。编写并调试一个单道处理系统的作业等待模拟程序。   作业等待算法:分别采用先来先服务(FCFS),最短作业优先(SJF)、响应比高者优先(HRN)的调度算法。 对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间,以比较各种算法的优缺点。 实验目的:用高级语言编写和调试一个或多个作业调度的模拟程序,以加深对作业调度算法的理解。 实验方法:分别采用先来先服务(FCFS),最短作业优先(SJF)、响应比高者优先(HRN)的调度算法,用户可根据需要选择算法。 实验代码:详见附件文件Test1,当输入1时,调用先来先服务算法。当输入2时,调用短作业优先算法。当输入3时,调用高响应比优先算法。

2017-07-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除