深度学习
文章平均质量分 73
uncle_ll
这个作者很懒,什么都没留下…
展开
-
预测代码中输入预处理问题
问题在编写预测程序的时候发现一个问题,明明训练测试的时候都是可以的,在编写预测的代码的时候发现有问题,找了好久发现问题出现在图像归一化预处理问题。网络结构中如果有对模型预处理的操作的话,在编写预测代码的时候就不要进行归一化预处理操作;如果网络结构中没有对模型预处理进行操作的话,则需要进行预处理,归一化到[0,1][0, 1][0,1] 或者 [−1,1][-1, 1][−1,1]预测程序#!/usr/bin/env pythonimport osimport cv2import sysimp原创 2021-12-13 19:13:39 · 3081 阅读 · 0 评论 -
GELU激活函数
论文:GAUSSIAN ERROR LINEAR UNITS (GELUS)项目:https://github.com/hendrycks/GELUsABSTRACT本文提出了高斯误差线性单元(GELU),一个高性能的神经网络激活函数。GELU激活函数为xΦ(x)xΦ(x)xΦ(x),其中Φ(x)Φ(x)Φ(x)为标准高斯累积分布函数。GELU非线性根据输入的值来权重,而不是像ReLUs(x1x>0x1_{x>0}x1x>0)那样通过符号来门输入。本文对ReLU和ELU激活的G.原创 2021-11-12 19:33:10 · 12084 阅读 · 1 评论 -
避免过拟合方法
过拟合训练时候效果好,但是测试时候效果并不好方法early stopping: 在发生过拟合之前提前结束训练,一般是设置一个训练间隔,多少间隔内loss没有继续下降或者精度没有提升的话,停止训练数据集扩增(data augmentation): 让模型见到更多的情况,可以最大化地满足全样本,但实际应用中对于未来事件的预测却显得鞭长莫及; 尽可能是收集更多真实的数据。正则化(regularization): 通过引入范数的概念,增强模型的泛化能力,包含L1与L2正则(也叫 weight decay原创 2021-04-07 22:39:37 · 313 阅读 · 0 评论 -
新服务器CPU/GPU python开发环境装机记录
更改pip源至国内镜像,显著提升下载速度服务器装机原因新申请了几台服务器,有GPU机器以及CPU机器,需要给配置下运行环境。对于GPU与CPU而言,大致流程差不多,只是GPU会麻烦一些,需要安装NVIDIA相关的驱动及加速包等。不过有了docker后,可以将能运行好的项目用docker打包后,直接在新机器上部署就能跑动了,但这比较适用于服务端部署时候使用,如果是个人开发,还是建议单独配置下环境较好。分配到服务器后,大致需要安装及配置以下几项内容:联系运维开通个人账户,及机器访问外网权限及端口权限原创 2020-08-20 13:07:36 · 532 阅读 · 1 评论 -
吴恩达深度学习课程笔记
详细笔记地址: http://www.ai-start.com/dl2017/这里只是做些自己的摘抄与理解写在前面吴恩达(英语:Andrew Ng)是斯坦福大学计算机科学系和电气工程系的客座教授,曾任斯坦福人工智能实验室主任。他还与达芙妮·科勒一起创建了在线教育平台Coursera。吴恩达老师的机器学习课程可以说是入门机器学习的同学最先接触的课程,当然后续的deeplearning.ai是...原创 2020-04-04 23:29:54 · 1633 阅读 · 0 评论 -
卷积核3x3 vs 7x7
感受野感受野:原指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号。在视觉神经系统中,视觉皮层中神经细胞的输出依赖于视网膜上的光感受器。当光感受器受刺激兴奋时,会将神经冲动信号传导至视觉皮层。不过需指出并不是所有神经皮层中的神经元都会接受这些信号。正是由于感受野等功能结构在猫的视觉中枢中的发现,催生了福岛邦彦提出多卷积和子采样操作的多层神经网络。卷积核:3x3...原创 2019-03-01 19:44:47 · 6448 阅读 · 2 评论 -
Caffe tensorflow keras pytorch跑动程序时限制GPU所占显存和强制使用cpu
应用场景: 在实验室或者公司时,一般会遇到服务器紧张的情况。在这种情况下,可以通过限制GPU所占显存来使得一台服务器可以同时跑几个模型,当然,土豪实验室或者公司不用担心这个问题。由于暂时只接触了Caffe,Tensorflow和keras,现只提供这三种深度学习框架的控制方法。解决办法: 对于caffe而言,默认不是占满GPU全部的显存,而是通过网络设置batc...原创 2018-09-13 13:08:56 · 3481 阅读 · 7 评论 -
ubuntu12.04向MATLAB/R2014b/toolbox里添加工具箱
本示例要添加降维drtoolbox工具箱,在最初向MATLAB/R2014b/toolbox里添加时,没有权限,因为toolbox的所有者是root,需要把所有者改为我当前的用户:lucky ,给它赋予读写权限.(1)首先使用sudo su 命令登陆root账户; 输入密码后即可(2)将当前路径设置为toolbox的上级目录MATLAB/R2014b;(3)更改所有者:chown luck原创 2017-03-06 21:37:45 · 828 阅读 · 0 评论 -
在caffe-windows下跑自己的数据集leveldb格式 或者lmdb
文介绍如何使用caffe对自己的图像数据进行分类。1 图片数据库准备由于图片数据收集比较费时,实验室数据库分为5类,1 2 3 4 5类,train150张,val256张。注意:图片要进行灰度处理!新建一个文件夹leveldb,放自己的数据,在leveldb文件夹下新建train和val文件夹,train文件夹下新建1、2、3、4、5文件夹分别存放150张类别图片,val原创 2017-01-11 09:06:32 · 4333 阅读 · 2 评论 -
(R/Python)t-SNE聚类算法实践指南
首发链接 :https://yq.aliyun.com/articles/70733作者介绍:Saurabh.jaju2 Saurabh是一名数据科学家和软件工程师,熟练分析各种数据集和开发智能应用程序。他目前正在加州大学伯克利分校攻读信息和数据科学硕士学位,热衷于开发基于数据科学的智能资源管理系统。Linkedin:https://in.linkedin.com翻译 2017-03-02 09:56:52 · 6954 阅读 · 0 评论 -
CS231课程笔记翻译
完结!CS231n官方笔记授权翻译总集篇发布 - 智能单元 - 知乎专栏 https://zhuanlan.zhihu.com/p/21930884CS231n课程笔记翻译:图像分类笔记(上) - 智能单元 - 知乎专栏https://zhuanlan.zhihu.com/p/20894041 CS231n课程笔记翻译:图像分类笔记(下) - 智能单元 - 知乎专转载 2016-11-29 09:53:58 · 2619 阅读 · 0 评论 -
无痛的机器学习第一季目录
首发于无痛的机器学习关注专栏写文章无痛的机器学习第一季目录经过5个月的努力,我终于完成了40篇不高不低还算有些干货的机器学习文章。回首看看这5个月的努力,每一次的写作都充满了开心与痛苦。说开心是因为当自己完成每一个章节的写作后,自己感觉对这一部分的知识有了更加深刻地认识,而痛苦则是对写作过程中一系列事情的恐惧—转载 2016-11-29 09:55:44 · 2154 阅读 · 0 评论 -
Netscope:一个支持Caffe的神经网络结构在线可视化工具
参考大神博客,地址http://blog.csdn.net/10km/article/details/52713027 Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,地址:http://ethereon.github.io/netscope/quickstart.html 它可以用来可视化Caffe结构里prototxt格式的网络结构 使原创 2017-01-06 20:41:32 · 2497 阅读 · 0 评论 -
caffe HDF5Data 层使用及数据生成
caffe生成hdf5数据集方法原创 2017-01-08 15:40:47 · 2324 阅读 · 2 评论 -
深度学习的四个步骤
深度学习的四个步骤:每个阶段给出的学习资源翻译 2016-09-09 15:46:01 · 17851 阅读 · 0 评论 -
python2.7 配置numpy Matplotlib 及其依赖项
折腾半天,最终还是安装好了,没有去官方的地址下载,也没有通过pip进行命令行自动下载安装。首先去CSDN搜索python2.7的相关资源,链接找不到了,大家自己在下面这个链接中搜寻自己合适的版本:http://download.csdn.net/search?q=Matplotlib%20for%20Python%202.7%E5%8F%8A%E5%85%B6%E4%BE%9D%E8%B5原创 2017-01-10 09:48:36 · 1773 阅读 · 0 评论 -
JSTSP2016 Fully Deep Blind Image Quality Predictor
这是一个直接用CNN做IQA的工作,直接输入图像不提取特征,借用FR-IQA方法解决了训练数据不足、大量图像没有MOS等问题。 文章首先提出NR-IQA与FR-IQA的区别——是否利用了原始图片信息:之后分析NR-IAQ与FR-IQA的一些典型方法:之后分析需要面对的三个问题:A、缺少训练数据B、缺少局部目标值C、特征学习的不同目的为了解原创 2017-02-20 14:34:05 · 3195 阅读 · 3 评论 -
caffe 加入 spp_net网络
caffe SSP(Spatial Pyramid Pooling) 分析首先摘抄一下 一篇博客文章:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition来源:Technicalreport大意:通过图像金字塔来实现识别中的尺度无关性转载 2017-02-21 15:57:09 · 2164 阅读 · 0 评论 -
Deep Reinforcement Learning for Dialogue Generation-关于生成对话的深度强化学习
摘要: 模拟对话的未来方向的关键在于生成连续、有趣的对话,导致对话的传统NLP模型去借鉴强化学习的需求。展示如何去整合这些目标,在聊天机器人对话中使用深度强化学习去建模未来的反馈。该模型模拟两个虚拟代理之间的对话,使用策略梯度算法惩罚序列,具有交互性,连贯性,易于回答等特点翻译 2016-07-03 21:32:13 · 6595 阅读 · 0 评论