spark 2.2.0学习笔记4之SparkSQLDemo

spark 2.2.0学习笔记4之SparkSQLDemo

Info

spark sql—-Spark 用来操作结构化/半结构化数据的程序包

  • 从各种数据源读取数据/支持各种方式的sql查询
    • hive查询
    • 支持udf(用户自定义函数)
  • SchemaRDD(DataFrame)—-存放Row 对象的RDD,每个Row 对象代表一行记录

    SELECT SUM(user.favouritesCount), SUM(retweetCount), user.id FROM tweets
    GROUP BY user.id

样例

  • 从数据源读取生成DataFrame与Dataset
  • 手动创建与Dataset互转
  • 隐式模式转换
  • 手动模式匹配

Code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package spark30.sql

import org.apache.spark.sql.Row
import spark30.basic.SparkContextUtil
// $example on:init_session$
import org.apache.spark.sql.SparkSession
// $example off:init_session$
// $example on:programmatic_schema$
// $example on:data_types$
import org.apache.spark.sql.types._
// $example off:data_types$
// $example off:programmatic_schema$

object SparkSQLDemo {

  val personJsonPath:String="example-scala-learn\\src\\spark30\\basic\\people.json"
  val personTextPath:String="example-scala-learn\\src\\spark30\\basic\\people.txt"

  // $example on:create_ds$
  // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
  // you can use custom classes that implement the Product interface
  case class Person(name: String, age: Long)
  // $example off:create_ds$

  def main(args: Array[String]) {
    // $example on:init_session$
    val spark = SparkContextUtil.getSparkSession("Spark SQL basic example")
     /* SparkSession
      .builder()
      .appName("Spark SQL basic example")
        .master("local")
      .config("spark.some.config.option", "some-value")
      .getOrCreate()*/

    // For implicit conversions like converting RDDs to DataFrames
    // $example off:init_session$

    runBasicDataFrameExample(spark)
    runDatasetCreationExample(spark)
    runInferSchemaExample(spark)
    runProgrammaticSchemaExample(spark)

    spark.stop()
  }

  private def runBasicDataFrameExample(spark: SparkSession): Unit = {
    // $example on:create_df$
    val df = spark.read.json(personJsonPath)

    // Displays the content of the DataFrame to stdout
    df.show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:create_df$

    // $example on:untyped_ops$
    // This import is needed to use the $-notation
    import spark.implicits._
    // Print the schema in a tree format
    df.printSchema()
    // root
    // |-- age: long (nullable = true)
    // |-- name: string (nullable = true)

    // Select only the "name" column
    df.select("name").show()
    // +-------+
    // |   name|
    // +-------+
    // |Michael|
    // |   Andy|
    // | Justin|
    // +-------+

    // Select everybody, but increment the age by 1
    df.select($"name", $"age" + 1).show()
    // +-------+---------+
    // |   name|(age + 1)|
    // +-------+---------+
    // |Michael|     null|
    // |   Andy|       31|
    // | Justin|       20|
    // +-------+---------+

    // Select people older than 21
    df.filter($"age" > 21).show()
    // +---+----+
    // |age|name|
    // +---+----+
    // | 30|Andy|
    // +---+----+

    // Count people by age
    df.groupBy("age").count().show()
    // +----+-----+
    // | age|count|
    // +----+-----+
    // |  19|    1|
    // |null|    1|
    // |  30|    1|
    // +----+-----+
    // $example off:untyped_ops$

    // $example on:run_sql$
    // Register the DataFrame as a SQL temporary view
    df.createOrReplaceTempView("people")

    val sqlDF = spark.sql("SELECT * FROM people")
    sqlDF.show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:run_sql$

    // $example on:global_temp_view$
    // Register the DataFrame as a global temporary view
    df.createGlobalTempView("people")

    // Global temporary view is tied to a system preserved database `global_temp`
    spark.sql("SELECT * FROM global_temp.people").show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+

    // Global temporary view is cross-session
    spark.newSession().sql("SELECT * FROM global_temp.people").show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:global_temp_view$
  }

  private def runDatasetCreationExample(spark: SparkSession): Unit = {
    import spark.implicits._
    // $example on:create_ds$
    // Encoders are created for case classes
    val caseClassDS = Seq(Person("Andy", 32)).toDS()
    caseClassDS.show()
    // +----+---+
    // |name|age|
    // +----+---+
    // |Andy| 32|
    // +----+---+

    // Encoders for most common types are automatically provided by importing spark.implicits._
    val primitiveDS = Seq(1, 2, 3).toDS()
    primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)

    // DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
    val path = personJsonPath
    val peopleDS = spark.read.json(path).as[Person]
    peopleDS.show()
    // +----+-------+
    // | age|   name|
    // +----+-------+
    // |null|Michael|
    // |  30|   Andy|
    // |  19| Justin|
    // +----+-------+
    // $example off:create_ds$
  }

  private def runInferSchemaExample(spark: SparkSession): Unit = {
    // $example on:schema_inferring$
    // For implicit conversions from RDDs to DataFrames
    import spark.implicits._

    // Create an RDD of Person objects from a text file, convert it to a Dataframe
    val peopleDF = spark.sparkContext
      .textFile(personTextPath)
      .map(_.split(","))
      .map(attributes => Person(attributes(0), attributes(1).trim.toInt))
      .toDF()
    // Register the DataFrame as a temporary view
    peopleDF.createOrReplaceTempView("people")

    // SQL statements can be run by using the sql methods provided by Spark
    val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")

    // The columns of a row in the result can be accessed by field index
    teenagersDF.map(teenager => "Name: " + teenager(0)).show()
    // +------------+
    // |       value|
    // +------------+
    // |Name: Justin|
    // +------------+

    // or by field name
    teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
    // +------------+
    // |       value|
    // +------------+
    // |Name: Justin|
    // +------------+

    // No pre-defined encoders for Dataset[Map[K,V]], define explicitly
    implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
    // Primitive types and case classes can be also defined as
    // implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()

    // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
    teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
    // Array(Map("name" -> "Justin", "age" -> 19))
    // $example off:schema_inferring$
  }

  private def runProgrammaticSchemaExample(spark: SparkSession): Unit = {
    import spark.implicits._
    // $example on:programmatic_schema$
    // Create an RDD
    val peopleRDD = spark.sparkContext.textFile(personTextPath)

    // The schema is encoded in a string
    val schemaString = "name age"

    // Generate the schema based on the string of schema
    val fields = schemaString.split(" ")
      .map(fieldName => StructField(fieldName, StringType, nullable = true))
    val schema = StructType(fields)

    // Convert records of the RDD (people) to Rows
    val rowRDD = peopleRDD
      .map(_.split(","))
      .map(attributes => Row(attributes(0), attributes(1).trim))

    // Apply the schema to the RDD
    val peopleDF = spark.createDataFrame(rowRDD, schema)

    // Creates a temporary view using the DataFrame
    peopleDF.createOrReplaceTempView("people")

    // SQL can be run over a temporary view created using DataFrames
    val results = spark.sql("SELECT name FROM people")

    // The results of SQL queries are DataFrames and support all the normal RDD operations
    // The columns of a row in the result can be accessed by field index or by field name
    results.map(attributes => "Name: " + attributes(0)).show()
    // +-------------+
    // |        value|
    // +-------------+
    // |Name: Michael|
    // |   Name: Andy|
    // | Name: Justin|
    // +-------------+
    // $example off:programmatic_schema$
  }
}

Code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值