最大子段和 --(动态规划)

N个整数组成的序列a11,a22,a33,…,ann, 求该序列如aii+ai+1i+1+…+ajj的连续子段和的最大值。当所给的整数均为负数时和为0。

例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。

Input

第1行:整数序列的长度N(2 <= N <= 50000) 
第2 - N + 1行:N个整数(-10^9 <= Aii <= 10^9)

Output

输出最大子段和。

Sample Input

6
-2
11
-4
13
-5
-2

Sample Output

20
#include <stdio.h>
#define ll long long
ll max(ll x,ll y)
{
	return x>y?x:y;
}
int main()
{
	ll n,a[50005],k=0;
	scanf("%lld",&n);
	for(ll i=0;i<n;i++)
	{
		scanf("%lld",&a[i]);
		if(a[i]<0)  k++;
	}
	if(k==n)   printf("0\n");
	else
	{
		ll sum=0,t=0;
		for(ll i=0;i<n;i++)
		{
			sum=max(sum,0)+a[i];
			t=max(sum,t);
		}
		printf("%lld\n",t);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值