深度学习
文章平均质量分 87
天蒙光
一个对新事物充满兴趣,同时又有着自己独有观点和看法的普通程序员。
展开
-
神经网络基础原理(二)----分类问题(含Tensorflow 2.X代码)
举线性回归的例子只是为了从最简单的角度来介绍神经网络的执行流程。神经网络在拟合线性函数方面的确存在得天独厚的优势。事实上,如果你对最优化理论熟悉,会发现神经网络的底层原理与最优化理论是一致的(目的都是求某一目标函数的极值)。神经网络擅长的并不仅限于拟合线性函数。分类问题是神经网络最经典的应用之一。所谓的分类问题,是指给定m个学习样本,如何根据先验知识,将这m个样本分成k类。解决分类问题第一步:数据建模解决分类问题的第一步(也是其它经典问题的第一步),是数据建模。通常会把将这m个样本,根据其一些可原创 2021-03-04 16:20:53 · 5548 阅读 · 2 评论 -
神经网络基础数学原理之一----线性回归(含Tensorflow 2.x代码)
本文是关于神经网络的原理的科普文。虽然提到神经网络,不可避免到涉及到一些数学推导的内容(如偏导),但本文尽量做到对一般学历能力(高中、专、本科等)的人都能完全读懂。虽然现在tensorflow的出现,令神经网络已经变成了一套封装良好的API,对于大部分直接使用者来说,不需要深究其中的运算过程及数学原理。但多了解点原理,对问题建模,构建网络,调优,排错来说,是大有陴益的。后面将通过一系列的文章来解释神经网络一些最基本的概念,包括输入样本(Input),标签(Label),神经元(neuron),神经网络(原创 2021-03-02 14:27:10 · 1161 阅读 · 0 评论 -
神经网络基础原理(三)-----分类问题实弹演练及一些小干货
现在基本的概念已经介绍得差不多了,是时候实战演示一下如何利用神经网络来处理分类问题的。按照一直的做法,自己出题自己解决。这次拿一个现实生活中的一个小问题来练练手:根据人的身高,体重,把人划分成轻,正常,偏胖,肥胖这四种情况。按照现在流行的观点认为,人正常的BMI指数范围在20-25之间,低于20就是过轻,高于25低于28是偏胖,高于28就是肥胖了。按照前面介绍的方法,解决问题的第一步是建模和打标签。根据问题的描述,可以把训练样本定义成一个2维向量,其中第1维表示身高(以米为计算单位),第2维是体重(以千原创 2021-03-05 16:52:51 · 526 阅读 · 0 评论 -
java深度学习框架Deeplearning4j实战(一)BP网络分类器
1、Deeplearning4j深度学习,人工智能今天已经成了IT界最流行的词,而tensorflow,phython又是研究深度学习神经网络的热门工具。tensorflow是google的出品,而phython又以简练的语法,独特的代码结构和语言特性为众多数据科学家和AI工程师们所喜爱。但今天介绍的不是这两个炙手可热的东东,而是相对冷门,但对于国内大多数的工程师而言更友好,基于java的另一...原创 2018-11-01 10:08:32 · 27955 阅读 · 10 评论