中国科学家完全破解世界级百年数学难题庞加莱猜想

 中国科学家完全破解世界级百年数学难题庞加莱猜想
发信站: 两全其美网 (Sat Jun  3 22:00:16 2006), 转信(lqqm.net)

新华网北京6月3日电 国际数学界关注上百年的重大难题--庞加莱猜想,近日被科学家完
全破解。哈佛大学教授、著名数学家、菲尔兹奖得主丘成桐3日在中国科学院晨兴数学研
究中心宣布,在美、俄等国科学家的工作基础上,中山大学朱熹平教授和旅美数学家、清
华大学兼职教授曹怀东已经彻底证明了这一猜想。
"这就像盖大楼,前人打好了基础,但最后一步--也就是'封顶'工作是由中国人来完成的。
"丘成桐说,"这是一项大成就,比哥德巴赫猜想重要得多。"
"这是第一次在国际数学期刊上给出了猜想的完整证明,成果极其突出。"数学家杨乐说。

在美国出版的《亚洲数学期刊》6月号以专刊的方式,刊载了长达300多页、题为《庞
加莱猜想暨几何化猜想的完全证明:汉密尔顿-佩雷尔曼理论的应用》的长篇论文。
任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一
定是一个三维圆球--这就是法国数学家庞加莱于1904年提出的猜想。庞加莱猜想和
黎曼假设、霍奇猜想、杨-米尔理论等一样,被并列为七大数学世纪难题之一。2000
年5月,美国的克莱数学研究所为每道题悬赏百万美元求解。
100多年来,无数的数学家关注并致力于证实庞加莱猜想。20世纪80年代初,美国
数学家瑟斯顿教授因为得出了对庞加莱几何结构猜想的部分证明结果而获得菲尔兹奖。之
后,美国数学家汉密尔顿在这个猜想的证明上也取得了重要进展。2003年,俄罗斯数
学家佩雷尔曼更是提出了解决这一猜想的要领。
运用汉密尔顿、佩雷尔曼的理论,朱熹平和曹怀东第一次成功处理了猜想中"奇异点"的难
题,发表了300多页的论文,给出了庞加莱猜想的完全证明。
从去年9月底至今年3月,朱熹平和曹怀东应邀前往哈佛大学,以每星期3小时的时间--
连续20多个星期、共约70个小时--向包括哈佛大学数学系主任在内的5位数学家进行
讲解,回答了专家们提出的一系列问题。
丘成桐指出,这一证明意义重大,将有助于人类更好地研究三维空间,对物理学和工程学
都将产生深远的影响。(记者 李斌)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 庞加莱猜想是一个关于质数的数学难题,提出于1640年代末由数学庞加莱(Pierre de Fermat)。猜想的严谨形式如下: 对于任意整数n>2,如果2^(n-1)≡1(mod n),那么n一定是质数。 迄今为止,庞加莱猜想尚未得到严谨证明。尽管如此,在过去几百年中,数学家们已经证明了庞加莱猜想在许多特殊情况下是正确的,例如当n小于等于3×10^4时,以及当n是满足一些其他条件的数字时。 庞加莱猜想尚未证明或者反证是因为现在已知的证明方法都无法构造出来一个反例 ( Counter Example ) . 其他证明该猜想的方法也还在不断地被探索中. ### 回答2: 庞加莱猜想是20世纪初法国数学家亨利·庞加莱提出的一项重要数学问题,它主要关注于三维欧几里得空间中的拓扑形态。庞加莱猜想假设:“任意一个连续的、有限的、无界的、完整的无法缩减为一点的三维流形都是同胚于三维球面。”为了严谨证明这个猜想,我将介绍一种较为简化的证明方法,由Grigori Perelman在2003年提出的证明思路。 首先,我们需明确庞加莱猜想关注的是三维欧几里得空间中的连续流形。在流形的定义下,我们可以使用微分几何的工具对其进行研究。根据流形的性质,我们可以引入一些关键概念,如曲率、度量等,这些概念有助于我们理解流形的本质。 接下来,我们需要证明的是,任意满足庞加莱猜想所述条件的流形都是同胚于三维球面。这可以通过证明三个关键命题来实现: 命题一:任意满足条件的流形是闭的,即没有边界。这可以通过使用流形的性质以及拓扑学中的一些定理和结果进行推导。 命题二:任意满足条件的流形具有正的平均曲率。通过使用微分几何的工具以及曲率的定义,可以得到该结论。 命题三:任意满足条件的流形是各向同性的,即其各个方向上的特征相同。这一结论来自于流形的平滑性和对称性的推导。 最后,结合以上三个命题,我们可以得出结论:任意满足庞加莱猜想所述条件的三维流形都具有正的平均曲率、各向同性以及闭合,从而可以被同胚于三维球面。 需要注意的是,上述只是一种较为简化的证明思路,并没有涵盖具体的数学推导过程。庞加莱猜想在领域内仍然存在许多深奥的数学理论和更复杂的证明方法,其中包括拓扑学、微分几何、拓扑三维流形的分类等领域的知识和技巧。 ### 回答3: 庞加莱猜想,又称为三维球面上的闭曲线定律或者指环定理,最初由法国数学家亨利·庞加莱于1904年提出。这个猜想表述了,在三维空间中的任意连续曲线都可以缩成一个点,即闭曲线不可以存在自交的情况。 为了证明庞加莱猜想,我们首先需要讨论三维空间的基础概念。在三维空间中,曲线可以用参数方程表示,即 C(t) = (x(t), y(t), z(t)),其中t为参数。 我们在这里引入曲线的长度概念。对于曲线C(t),其长度可以表示为积分形式 L = ∫(t1,t2)√[x'(t)² + y'(t)² + z'(t)²]dt, 其中x'(t),y'(t),z'(t)分别表示C(t)在x、y、z轴上的导数。 接下来,我们假设存在一个闭曲线C,其自交,即曲线上存在两点P和Q,它们相交于点R,如下所示: C(t) = R, P<t<Q。 根据曲线的长度定义,我们可以将曲线从P点开始分成两段曲线,即 C1(t) = (x1(t), y1(t), z1(t)),P<t<R,线段PR; C2(t) = (x2(t), y2(t), z2(t)),R<t<Q,线段RQ。 对于曲线长度来说,我们有 L = L1 + L2 = ∫(t1,R)√[x1'(t)² + y1'(t)² + z1'(t)²]dt + ∫(R,t2)√[x2'(t)² + y2'(t)² + z2'(t)²]dt。 由于C(t)是一个闭曲线,即t1和t2可以取任意值。那么我们可以假设有一个最小长度的情况,使得L最小。在这个最小长度情况下,我们可以通过构造改变曲线C的方法,将C(t)缩成一个点。这与庞加莱猜想的假设相矛盾。 因此,根据最小长度的分析推理,我们得出结论:三维空间中的任意连续闭曲线都可以缩成一个点,即庞加莱猜想成立。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值