信息检索中的主要算法模型(TF-IDF、BM25等)以及IR系统的原理、架构设计和实现过程,阐述基于BM25模型的中文信息检索系统的实现原理和关键技术。并结合实际案例实践展示其优势及其局限性

本文深入探讨信息检索中的TF-IDF、BM25等算法模型,重点阐述基于BM25的中文信息检索系统实现原理,包括倒排索引、文档积极度模型、模糊匹配等关键技术。通过具体代码实例展示如何实现倒排索引和Okapi BM25模型,并通过案例实践展示其优势和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

近几年来,以人工智能(AI)为核心的技术革命带动了机器学习、深度学习、强化学习等领域的高速发展,取得了长足的进步。在这个过程中,工程师们提出了一系列关于“从数据到AI”、“构建和部署AI系统”、“控制AI”、“超越AI”等诸多问题的挑战。为了解决这些问题,提升人工智能的应用效率和效益,工程师们不断探索新的方法论和技术。

在这个信息爆炸的时代,如何准确、有效地筛选信息资源成为各类信息工作者面临的重要课题之一。而有效的信息筛选策略则直接影响着信息工作者的效率和产出。因此,基于搜索引擎的新型信息检索方式也成为众多互联网企业必备技能之一。

本文主要通过阅读信息检索中的主要算法模型(TF-IDF、BM25等)以及IR系统的原理、架构设计和实现过程,阐述基于BM25模型的中文信息检索系统的实现原理和关键技术。并结合实际案例实践展示其优势及其局限性,为后续的研究、应用提供参考。

2.背景介绍

信息检索(Information Retrieval, IR)旨在从海量文档中快速、准确地检索出用户需求或兴趣相关的内容,并对这些内容进行整合、排序、评估、分类、过滤等操作,最终为用户提供具有价值的信息服务。

目前,中文信息检索技术已经在蓬勃发展。早期,人们借助手工制作的词典、索引文件等手段来完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值