hdu_1223 Order Count

暴力的时间复杂度是O(N!)不废话,稍微发现,当出现小于号的时候后面的结构都是一样的,所以使用记忆化方式求,时间复杂度是O(2^n),对于本题的测试数据量50,还是压力非常大的,考虑如下序列,当序列第一次出现小于号的时候,其实就是组合数, 设F[n] = sum(Cn,k*F[n-k]) (1 <= k <= n)

import java.util.*;
import java.math.*;

class Main {
        static int MAXN = 51;
        static BigInteger[] f = new BigInteger[MAXN];

        static void cal(int n) {
                BigInteger up, down;
                f[0] = BigInteger.valueOf(0x1);
                for(int i = 1; i <= n; i ++) {
                        f[i] = BigInteger.valueOf(0x0);
                        for(int k = 1; k <= i; k ++) {
                                down = up = BigInteger.valueOf(0x1);
                                for(int j = 1; j <= i; j ++) {
                                        up = up.multiply(BigInteger.valueOf(j));
                                }
                                for(int j = 1; j <= k; j ++) {
                                        down = down.multiply(BigInteger.valueOf(j));
                                }
                                for(int j = 1; j <= i-k; j ++) {
                                        down = down.multiply(BigInteger.valueOf(j));
                                }
                                up = up.divide(down);
                                f[i] = f[i].add(up.multiply(f[i-k]));
                        }
                }
        }

        public static void main(String [] args) {
                for(int i = 1; i < MAXN; i ++) {
                        cal(i);
                }
                Scanner scanf = new Scanner(System.in);
                int cas, n;
                cas = scanf.nextInt();
                for(int i = 0; i < cas; i ++) {
                        n = scanf.nextInt();
                        System.out.println(f[n]);
                }
        }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值