題意:
略
分析:
這個應該可以暴力,具體沒有嘗試,不過看submit有400多ms的估計就是使用暴力的,對於這個題目我是使用狀態壓縮的方法解決的
把已經選擇了的數字看成一個集合
狀態:f[s][tail_idx] 表示選擇的集合爲s且放在最後一個數字的映射爲tail_idx的最小cost.
狀態轉移: f[s][tail_idx] = min(f[s-s0][k] + cost[n[tail_idx][n[k]]), k != tail_idx.
Code:
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
#define DIR 4
#define DIM 2
#define STATUS 2
#define MAXN 1000 + 10
#define oo (~0u)>>1
#define INF 0x3F3F3F3F
#define REPI(i, s, e) for(int i = s; i <= e; i ++)
#define REPD(i, e, s) for(int i = e; i >= s; i --)
static const double EPS = 1e-5;
const int num = 9;
const int maxn = 1024;
int n[num+1], cnt;
int f[maxn+1][num+1], cost[num+1][num+1];
void input(void)
{
int tmp;
scanf("%d", &tmp);
cnt = 0;
while( tmp ) {
n[cnt ++] = tmp%10;
tmp /= 10;
}
REPI(i, 0, num) {
REPI(j, 0, num) {
scanf("%d", &cost[i][j]);
}
}
}
inline int cnt_bit(int s)
{
if( !s ) {
return 0;
}
return cnt_bit(s/2)+(s&1);
}
inline int dp(int s, int tail_idx)
{
if( -1 != f[s][tail_idx] ) {
return f[s][tail_idx];
}
if( 1 == cnt_bit(s) ) {
int idx;
REPI(i, 0, cnt-1) {
if( s&(1<<i) ) {
idx = i;
break;
}
}
if( !n[idx] ) {
return f[s][tail_idx] = INF;
}
return f[s][tail_idx] = cost[n[idx]][n[tail_idx]];
}
f[s][tail_idx] = INF;
REPI(i, 0, cnt-1) {
if( i != tail_idx && s&(1<<i) ) {
f[s][tail_idx] = min(f[s][tail_idx], dp(s^(1<<i), i)+cost[n[i]][n[tail_idx]]);
}
}
return f[s][tail_idx];
}
int process(void)
{
int final = (1<<cnt)-1;
REPI(i, 0, final) {
memset(f[i], -1, sizeof(f[i]));
}
int rst = INF;
REPI(i, 0, cnt-1) {
rst = min(rst, dp(final^(1<<i), i));
}
return rst;
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("test.in", "r", stdin);
#endif
int cas;
scanf("%d", &cas);
REPI(k, 1, cas) {
input();
printf("%d\n", process());
}
return 0;
}