我的使用体验:
- 包管理:使用conda创建和管理项目环境,无需单独下载Python解释器,轻松指定任意版本的Python,实现多版本共存,推荐为每个新项目创建独立的虚拟环境,避免依赖冲突。----创建项目
-
Jupyter Notebook:代码测试的理想平台:使用base环境,预装大量常用库,即开即用,交互式编程环境,支持实时代码执行和可视化,完美适合数据探索、原型开发和结果展示-----代码测试
-
vscode + Anaconda:敲代码有他俩就够了
Anaconda简介
Anaconda极大地简化了数据科学工作流程,从环境设置到项目部署。它为初学者提供了一个低门槛的入口,同时为专业人士提供了强大而灵活的工具。通过使用Anaconda,数据科学家和研究人员可以将更多精力集中在数据分析和模型开发上,而不是纠结于环境配置和包管理的技术细节。
Anaconda是一个开源的数据科学平台,它集成了Python/R编程语言以及数百个用于科学计算、数据分析、机器学习和深度学习的科学包。它的目标用户群包括:
- 数据科学家和分析师
- 机器学习工程师
- 研究人员和学者
- 软件开发者
- 学生和教育工作者
Anaconda旨在简化数据科学工作流程,提供一个一站式解决方案,从数据处理到模型部署。
1.Anaconda的核心组件
a) conda:
- 强大的包管理器和环境管理器
- 可以轻松创建、保存、加载和切换项目环境
- 处理包依赖关系,确保兼容性
b) Python/R:
- 预装最新稳定版的Python
- 可选安装R语言支持
- 两种语言都配有大量数据科学相关的库
c) Anaconda Navigator:
- 图形用户界面,方便不熟悉命令行的用户
- 可视化管理环境、包和应用程序
d) Jupyter Notebook:
- 交互式编程环境
- 支持实时代码执行、可视化和文档编写
- ideal for exploratory data analysis and sharing results
2.Anaconda的主要优点
a) 简化环境管理
- 轻松创建和切换不同的Python/