算法打卡day46|动态规划篇14| Leetcode 1143.最长公共子序列、1035.不相交的线、53. 最大子序和

文章讲述了如何使用动态规划解决LeetCode中的三道问题:1143.最长公共子序列(通过比较字符并记录最长子序列),1035.不相交的线(求最长公共子序列长度),以及53.最大子序和(连续子数组和)。作者详细解释了动态规划的五步骤和代码实现。
摘要由CSDN通过智能技术生成

算法题

Leetcode 1143.最长公共子序列

题目链接:1143.最长公共子序列

大佬视频讲解:1143.最长公共子序列视频讲解

 个人思路 

本题和718. 最长重复子数组很相像,思路差不多还是用动态规划。区别在于这题不要求是连续的了但要有相对顺序

解法
动态规划

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

这里定义长度为[0, i - 1]的字符串text1,是为了后面代码实现方便,简化了dp数组第一行和第一列的初始化逻辑。

2.确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

3.dp数组如何初始化

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

4.确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

5.举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:


class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
 	
        int[][] dp = new int[text1.length() + 1][text2.length() + 1]; // dp数组初始化

        for (int i = 1 ; i <= text1.length() ; i++) {
            char char1 = text1.charAt(i - 1);
            for (int j = 1; j <= text2.length(); j++) {
                char char2 = text2.charAt(j - 1);
                if (char1 == char2) { // 相同情况
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);//不同情况取最大值
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}

时间复杂度:O(n*m);( n 和 m 分别为 text1 和 text2 的长度)

空间复杂度:O( n*m);(二维dp数组)


 Leetcode  1035.不相交的线

题目链接:1035.不相交的线

大佬视频讲解:1035.不相交的线视频讲解

个人思路

这道题没想到啥思路,想复杂了...

解法
动态规划

先画图根据例子分析一下,示例:A = [1,4,2], B = [1,2,4]相交情况如图:

直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交

其实也就是说A和B的最长公共子序列是[1,4],长度为2。 所以本题是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度那就和上题思路相同,就不进行动规分析

只用字符串名字改一下,其他代码都不用改,直接cv

  class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        int[][] dp = new int[len1 + 1][len2 + 1];

        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        return dp[len1][len2];
    }
}

时间复杂度:O(n*m);( n 和 m 分别为 nums1和 nums2 的长度)

空间复杂度:O( n*m);(二维dp数组)


 Leetcode 53. 最大子序和

题目链接:53. 最大子序和

大佬视频讲解:53. 最大子序和视频讲解

个人思路

这道题之前贪心算法解过,这次用动态规划解

解法
动态规划

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

2.确定递推公式

dp[i]只有两个方向可以推出来

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]

4.确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]

因为dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

所以要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。所以在递推公式的时候,可以直接选出最大的dp[i]

 public static int maxSubArray(int[] nums) {
        if (nums.length == 0) {
            return 0;
        }

        int res = nums[0];
        int[] dp = new int[nums.length];
        dp[0] = nums[0];//初始化赋值

        for (int i = 1; i < nums.length; i++) {
            dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
            res = res > dp[i] ? res : dp[i];//保存最大的结果
        }
        return res;
    }

时间复杂度:O(n);(遍历数组)

空间复杂度:O( n);(一维dp数组)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值