《基于改进LSTM算法的高光谱图像分类方法》

高光谱图像分类python语言编写
改进lstm算法
改进的思想是高光谱图像存在同物易谱和异物同谱现象,导致原始的光谱信息在反映地物类别上不够准确,因此通过结合像元的类别信息,定义一个误差损失函数,求解各像元与其他像元之间的表示系数,实现原始像元的重构,能够增强同类数据的协同性不同类数据的分离性。

ID:17200664844394074

今天还是搬砖人


高光谱图像分类是一项关键的图像分析任务,在许多领域具有广泛的应用。然而,由于高光谱图像存在同物易谱和异物同谱现象,传统的分类算法在反映地物类别上往往不够准确。因此,本文提出了一种改进的LSTM算法,旨在提高高光谱图像分类的准确性和效率。

首先,我们需要了解高光谱图像的特点。高光谱图像由数百个连续波段的光谱数据组成,每个像元都包含了丰富的光谱信息。然而,由于同物易谱和异物同谱现象的存在,原始的光谱信息无法准确地反映地物类别。因此,在改进的LSTM算法中,我们引入了像元的类别信息,并定义了一个误差损失函数来求解表示系数。

具体来说,我们通过在LSTM模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值