高光谱图像分类python语言编写
改进lstm算法
改进的思想是高光谱图像存在同物易谱和异物同谱现象,导致原始的光谱信息在反映地物类别上不够准确,因此通过结合像元的类别信息,定义一个误差损失函数,求解各像元与其他像元之间的表示系数,实现原始像元的重构,能够增强同类数据的协同性不同类数据的分离性。
ID:17200664844394074
今天还是搬砖人
高光谱图像分类是一项关键的图像分析任务,在许多领域具有广泛的应用。然而,由于高光谱图像存在同物易谱和异物同谱现象,传统的分类算法在反映地物类别上往往不够准确。因此,本文提出了一种改进的LSTM算法,旨在提高高光谱图像分类的准确性和效率。
首先,我们需要了解高光谱图像的特点。高光谱图像由数百个连续波段的光谱数据组成,每个像元都包含了丰富的光谱信息。然而,由于同物易谱和异物同谱现象的存在,原始的光谱信息无法准确地反映地物类别。因此,在改进的LSTM算法中,我们引入了像元的类别信息,并定义了一个误差损失函数来求解表示系数。
具体来说,我们通过在LSTM模