Logistic回归模型的拟合问题:
与之前的代价函数不同,Logistic回归代价函数的写法发生了一点变化:
Logistic回归代价函数图像描述:
当y=1时,假如我们预测值也是为1,那么显然代价函数的值将接近0,因为实际值和预测值符合。假如我们预测值为0,这时与实际值相差太明显,甚至结果相反,所以这时我们的代价值将会很大趋近于无穷大。如下图所示:
同理:当y=0时,假如预测值也是0,则代价趋于0,预测值为1,则代价趋于无穷。如下图:
Logistic回归模型的拟合问题:
与之前的代价函数不同,Logistic回归代价函数的写法发生了一点变化:
Logistic回归代价函数图像描述:
当y=1时,假如我们预测值也是为1,那么显然代价函数的值将接近0,因为实际值和预测值符合。假如我们预测值为0,这时与实际值相差太明显,甚至结果相反,所以这时我们的代价值将会很大趋近于无穷大。如下图所示:
同理:当y=0时,假如预测值也是0,则代价趋于0,预测值为1,则代价趋于无穷。如下图: