二、代价函数

代价函数

我们手中有一部分样本的数据 ( x i , y i ) (x_i,y_i) (xi,yi),绘制在坐标图上

image-20220730083637107

现在,我们要求求一条直线,能够拟合出上图中这些样本点。

image-20220730083746601

假设,直线的函数表达式为 h ( x ) = θ 0 + θ 1 x h(x)=\theta_0+\theta_1x h(x)=θ0+θ1x,我们的目标是:选择合适的参数值 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1使得输入样本点处的 x x x值,得到的 h ( x i ) h(x_i) h(xi) y i y_i yi足够接近。

那么如何度量出预测值 h ( x i ) h(x_i) h(xi)与样本值 y i y_i yi“足够接近”?使用如下的表达式:
1 2 N ∑ i = 1 N ( h ( x i ) − y i ) 2 \frac{1}{2N}\sum_{i=1}^{N}(h(x_i)-y_i)^2 2N1i=1N(h(xi)yi)2

  • 解释:求样本值与预测值误差的平方和,再取平均值。这里的再÷2的目的是为了在平方求导时能够消掉2: ( ( h ( x ) − y i ) 2 ) ′ = 2 h ( x ) h ′ ( x ) ((h(x)-y_i)^2)'=2h(x)h'(x) ((h(x)yi)2)=2h(x)h(x)

因此,“足够接近”这一目标就转变成:求出合适的 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1能够使公式 ( 1 ) (1) (1)达到最小值。

公式 ( 1 ) (1) (1)(平方误差代价函数)也被称为代价函数

Cost Function:
J ( θ 0 , θ 1 ) = 1 2 N ∑ i = 1 N ( h ( x i ) − y i ) 2 J(\theta_0,\theta_1)=\frac{1}{2N}\sum_{i=1}^{N}(h(x_i)-y_i)^2 J(θ0,θ1)=2N1i=1N(h(xi)yi)2
Goal:
min ⁡ θ 0 , θ 1 J ( θ 0 , θ 1 ) \min_{\theta_0,\theta_1}J(\theta_0,\theta_1) θ0,θ1minJ(θ0,θ1)
下面来看一下Cost Function的图像是怎么样的:

  • 为了方便起见,我们将 θ 0 \theta_0 θ0置0,即 h ( x ) = θ 1 x , J ( θ 1 ) h(x)=\theta_1x,J(\theta_1) h(x)=θ1x,J(θ1)

  • 同时,假设样本点全在 h ( x ) = x h(x)=x h(x)=x这条直线上

    image-20220730092354740

  • 现在,逐步改变 θ 1 ( θ = − ∞ . . . − 2 , − 1 , 0 , 1 , 2... + ∞ ) \theta_1(\theta=-\infty...-2,-1,0,1,2...+\infty) θ1(θ=∞...2,1,0,1,2...+)的值(即改变斜率),用公式 1 2 N ∑ i = 1 N ( h ( x i ) − y i ) 2 \frac{1}{2N}\sum_{i=1}^{N}(h(x_i)-y_i)^2 2N1i=1N(h(xi)yi)2求出 J ( θ 1 ) J(\theta_1) J(θ1),然后把 J ( θ 1 ) J(\theta_1) J(θ1)画在坐标图上

    image-20220730092929335

    这就是Cost Function的图像,从图中可以看出,当 x = 1 x=1 x=1时,函数值最小,与我们预设样本点在 h ( x ) = x h(x)=x h(x)=x上一致;当 θ 1 → ∞ \theta_1\to\infty θ1时, J ( θ ) → ∞ J(\theta)\to\infty J(θ)

根据以上的例子,我们对代价函数的概念和图像都有了一定的了解,现在加一点复杂度,当上述的 θ 0 \theta_0 θ0是一个常数时(考虑 θ 0 \theta_0 θ0),即有两个参数时,对应的Cost Function应该是什么样的?

  • 样本数据绘制结果如下:

    image-20220730095749878

  • 对于 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1 取不同的值,得到 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)是一个二元函数,在三维坐标系中画出 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)的图像如下:

    image-20220730100034126

  • 为了能够更方便的比较数据,我们采用等高线图来表示这个函数:

    image-20220730100208901

  • h ( x ) h(x) h(x)的曲线如下时,拟合的结果较好,同时在等高线图中对应的 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)与最小值点非常接近,符合预期。

    image-20220730100421795

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值