Python构建xgboost模型-训练、测试、验证数据及构建,模型训练,及模型调参介绍

本文介绍了在构建模型前如何划分训练、验证和测试数据,提供了Python代码示例,并详细讲解了Xgboost模型的构建,包括关键参数及其作用。同时,强调了利用验证数据调整参数的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、在构建模型之前首先需要确定模型构建所需的数据集

训练集:用于训练模型
验证集:模型训练过程中单独留出的样本集,用于初步查看模型效果,是否过拟合,进一步调参
测试集:用来评估模最终模型的泛化能力,但不能作为调参、选择特征等算法相关的选择的依据。一般取与训练和测试不同时间段的数据,查看模型实际应用效果及随时间变化情况。

三类数据构建的Python代码案例:

# 先根据有业务价值的时间将测试数据与训练、验证数据拆分
data_model_train = data[data['time'] <= '2023-12-23']
data_model_time_test = data[data['time'] > '2023-12-23']

# 处理跨时间测试数据
## 提取行标签、结果标签y
data_model_time_test_index = data_model_time_test['index']
data_model_time_test_y = data_model_time_test['y']
## 剔除模型验证时不需要的字段(需与最终模型训练所需字段保持一致,例如行标签列、结果标签列剔除)
delete_list = ['column1','column2','column3']
time_test_x = data_model_time_test.drop(delete_list, axis=1).values        # 其中values将数据表转换成矩阵入模型
time_test_y = data_model_time_test_y

# 处理训练、验证数据(一般将数据进行随机7:3分)
## 数据
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值