从特征生成到模型构建 - Python实现

607 篇文章 ¥299.90 ¥399.90
本文探讨了机器学习中的特征工程重要性,通过Python利用scikit-learn进行数据预处理,如鸢尾花数据集,然后用多项式扩展和交互特征生成新特征,结合PolynomialFeatures和FeatureUnion。还介绍了使用RandomForestClassifier和GradientBoostingClassifier进行多模型构建,以提升模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从特征生成到模型构建 - Python实现

在机器学习中,特征工程是非常重要的一环。好的特征可以大幅提升模型效果,所以我们需要多种方式组合特征进行生成。本文介绍了如何使用Python实现特征工程的流程,并介绍了多模型构建的方法。

首先,我们需要准备数据集并进行数据预处理。在这里我使用了scikit-learn提供的鸢尾花数据集进行演示。

from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler

iris = load_iris()
X = iris.data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值