Python实现多数投票机制进行集成学习
集成学习是一种通过将多个分类器组合来提高预测准确性的技术,多数投票是其中一种常用的方法。多数投票法基于机器学习中的假设,即不同的算法通常会得到不同的结果。在多数投票法中,我们训练多个模型并对每个模型的输出进行投票,从而选择最常见的类别作为预测输出。
下面我们展示一个简单的Python实现多数投票法的例子。假设我们有三个模型,每个模型都能够对鸢尾花进行分类。我们可以使用sklearn库中的load_iris函数来加载鸢尾花数据集。
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.</